【題目】如圖,PA⊥圓O所在的平面,AB是圓O的直徑,C是圓O上的一點,E、F分別是點A在PB、PC上的射影,給出下列結論: ①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC;⑤平面PBC⊥平面PAC.其中正確命題的序號是 .
【答案】①②③⑤
【解析】解:∵PA⊥圓O所在的平面α,BCα,∴PA⊥BC, AB是圓O的直徑,C是圓O上的一點,∴BC⊥AC,
又PA∩AC=A,∴BC⊥平面PAC,AF平面PAC,
∴BC⊥AF,又AF⊥PC,PC∩BC=C,
∴AF⊥平面PBC,PB平面PBC,
∴AF⊥PB,即①正確;
又AE⊥PB,同理可證PB⊥平面AFE,EF平面AFE,
∴EF⊥PB,即②正確;
由BC⊥平面PAC,AF平面PAC知,BC⊥AF,即③正確;
∵AF⊥平面PBC(前邊已證),AE∩AF=A,
∴AE不與平面PBC垂直,故④錯誤,
∵AF⊥平面PBC,且AF平面PAC,
∴平面PAC⊥平面PBC,即⑤正確.
綜上所述,正確結論的序號是①②③⑤.
所以答案是:①②③⑤
【考點精析】解答此題的關鍵在于理解空間中直線與平面之間的位置關系的相關知識,掌握直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f ( x )=sin(2x+ )+cos(2x+ )+2sin x cos x.
(Ⅰ)求函數(shù) f ( x) 圖象的對稱軸方程;
(Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 個單位,再將所得圖象上各點的橫坐標伸長為原來的 4 倍,縱坐標不變,得到函數(shù) y=g ( x) 的圖象,求 y=g ( x) 在[ ,2π]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國唐代詩人王維詩云:“明月松間照,清泉石上流”,這里明月和清泉,都是自然景物,沒有變,形容詞“明”對“清”,名詞“月”對“泉”,詞性不變,其余各詞均如此.變化中的不變性質,在文學和數(shù)學中都廣泛存在.比如我們利用幾何畫板軟件作出拋物線C:x2=y的圖象(如圖),過交點F作直線l交C于A、B兩點,過A、B分別作C的切線,兩切線交于點P,過點P作x軸的垂線交C于點N,拖動點B在C上運動,會發(fā)現(xiàn) 是一個定值,該定值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設D為不等式組 表示的平面區(qū)域,對于區(qū)域D內(nèi)除原點外的任一點A(x,y),則2x+y的最大值是 , 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m,n(3≤m≤n)是正整數(shù),數(shù)列Am:a1 , a2 , …,am , 其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若數(shù)列Am滿足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,總存在k(1≤k≤m)有ai+aj=ak , 則稱數(shù)列Am是“好數(shù)列”. (Ⅰ)當m=6,n=100時,
(。┤魯(shù)列A6:11,78,x,y,97,90是一個“好數(shù)列”,試寫出x,y的值,并判斷數(shù)列:11,78,90,x,97,y是否是一個“好數(shù)列”?
(ⅱ)若數(shù)列A6:11,78,a,b,c,d是“好數(shù)列”,且a<b<c<d,求a,b,c,d共有多少種不同的取值?
(Ⅱ)若數(shù)列Am是“好數(shù)列”,且m是偶數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,P(x,y)為函數(shù)y=1+lnx圖象上一點,記直線OP的斜率k=f(x). (Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+ )(m>0)上存在極值,求實數(shù)m的取值范圍;
(Ⅱ)當x≥1時,不等式f(x)≥ 恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在y軸上的橢圓E的中心是原點O,離心率等于 ,以橢圓E的長軸和短軸為對角線的四邊形的周長為4 ,直線,l:y=kx+m與y軸交干點P,與橢圓E相交于A、B兩個點. (Ⅰ)求橢圓E的方程;
(Ⅱ)若 =3 ,求m2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,CA=CB,側面ABB1A1是邊長為2的正方形,點E,F(xiàn)分別在線段AAl , A1B1上,且AE= ,A1F= ,CE⊥EF,M為AB中點 (Ⅰ)證明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωx,其中常數(shù)ω>0.
(Ⅰ)令ω=1,求函數(shù) 在 上的最大值;
(Ⅱ)若函數(shù) 的周期為π,求函數(shù)g(x)的單調(diào)遞增區(qū)間,并直接寫出g(x)在 的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com