已知圓C1:x2+y2+mx+8y-8=0和圓C2:x2+y2-4x+ny-2=0的公共弦AB所在直線方程為x+2y-1=0,兩圓C1,C2的圓心距為
 
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:利用兩個(gè)圓的公共弦的方程,推出m、n的值,然后求解圓心距化簡(jiǎn)即可.
解答: 解:圓C1:x2+y2+mx+8y-8=0和圓C2:x2+y2-4x+ny-2=0的公共弦AB的方程為:x2+y2+mx+8y-8-(x2+y2-4x+ny-2)=0,即(m+4)x+(8-n)y-6=0.就是x+2y-1=0,可得m=2,n=-4.
圓C1:x2+y2+mx+8y-8=0化為:x2+y2+2x+8y-8=0,圓心坐標(biāo)(-1,-4),
和圓C2:x2+y2-4x+ny-2=0化為:x2+y2-4x-4y-2=0,圓心坐標(biāo)(2,2),
兩圓C1,C2的圓心距為:
(2+1)2+(2+4)2
=3
5

故答案為:3
5
點(diǎn)評(píng):本題考查兩個(gè)圓的位置關(guān)系的應(yīng)用,公共弦的方程的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把滿足:①各項(xiàng)均為正數(shù);②2an=Sn+
1
2
(n∈N*)這兩個(gè)條件的數(shù)列{an}稱為“正氣數(shù)列”,其中Sn為其前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an2=(
1
2
)
bn
,設(shè)cn=
bn
an
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<α<
π
4
,則
lim
n→∞
sinnα-cosnα
sinnα+cosnα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小組有男女學(xué)生若干人排成一排,其中女生5人,設(shè)M為恰有指定4名女生連排在一起的排法數(shù),N為全部男生連排在一起,全部女生也連排在一起的排法數(shù),已知5M=36N,試求這個(gè)小組的學(xué)生總數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(ωx+
π
4
)(A>0,ω>0)的周期為π,最大值為3,則A=
 
,ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且(2c-a)cosB=bcosA.
(1)求cosB的值;
(2)若a=3,b=2
2
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出一個(gè)能夠判斷任意三個(gè)正數(shù)能否構(gòu)成三角形的程序框圖,如果構(gòu)成三角形并輸出三角形的形狀(銳角、直角或鈍角三角形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
2
)-4cos(π-x)sin(x-
π
6
).
(1)求f(0)的值;
(2)求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案