【題目】已知函數(shù),xR

1)判斷函數(shù)的奇偶性,并說明理由;

2)利用函數(shù)單調(diào)性定義證明:上是增函數(shù);

3)若對任意的xR,任意的 恒成立,求實數(shù)k的取值范圍.

【答案】(1)是偶函數(shù),證明詳見解析;(2)詳見解析;(3).

【解析】

1)由奇偶性定義判斷證明;

2)由單調(diào)性定義證明;

3)設(shè),換元后求出的最大值,由(2)求出有最小值,然后解不等式可得k的范圍.

1是偶函數(shù).證明如下:

函數(shù)的定義域為,關(guān)于原點對稱,

是偶函數(shù).

2)設(shè),則

,知,,于是,

,

,即,

上是增函數(shù).

3)設(shè),則

,

,易知,則,

又∵ R上的偶函數(shù),且在上單調(diào)遞增,則該函數(shù)在區(qū)間上單調(diào)遞減,∴

由題意只需4+k≤6,解得k≤2,即k的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點P1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):

1)直線l垂直;

2lx軸、y軸上的截距之和等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面,且是邊長為2的等邊三角形,

(1)若是線段的中點,證明:直線

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繳納個人所得稅是收入達(dá)到繳納標(biāo)準(zhǔn)的公民應(yīng)盡的義務(wù).

①個人所得稅率是個人所得稅額與應(yīng)納稅收入額之間的比例;

②應(yīng)納稅收入額=月度收入-起征點金額-專項扣除金額(三險一金等);

2018831日,第十三屆全國人民代表大會常務(wù)委員會第五次會議《關(guān)于修改中華人民共和國個人所得稅法的決定》,將個稅免征額(起征點金額)由3500元提高到5000.下面兩張表格分別是2012年和2018年的個人所得稅稅率表:

201211日實行:

級數(shù)

應(yīng)納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過1500元的部分

3

0

超過1500元至4500元的部分

10

105

超過4500元至9000元的部分

20

555

超過9000元至35000元的部分

25

1005

超過35000元至55000元的部分

30

2755

超過55000元至80000元的部分

35

5505

超過80000元的部分

45

13505

2018101日試行:

級數(shù)

應(yīng)納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過3000元的部分

3

0

超過3000元至12000元的部分

10

210

超過12000元至25000元的部分

20

1410

超過25000元至35000元的部分

25

2660

超過35000元至55000元的部分

30

4410

超過55000元至80000元的部分

35

7160

超過80000元的部分

45

15160

1)何老師每月工資收入均為13404元,專項扣除金額3710元,請問何老師10月份應(yīng)繳納多少元個人所得稅?若與9月份相比,何老師增加收入多少元?

2)對于財務(wù)人員來說,他們計算個人所得稅的方法如下:應(yīng)納個人所得稅稅額=應(yīng)納稅收入額×適用稅率-速算扣除數(shù),請解釋這種計算方法的依據(jù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若處的切線平行于軸,求的值和的極值;

(2)若過點可作曲線的三條切線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若處的切線方程為,求的值;

(2)若為區(qū)間上的任意實數(shù),且對任意,總有成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;

(2)若三角形有一個內(nèi)角為,周長為定值,求面積的最大值;

(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),

,

,,則,

但是,其中等號成立的條件是,于是矛盾,

所以,此三角形的面積不存在最大值.

以上解答是否正確?若不正確,請你給出正確的答案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為焦點的雙曲線上,過軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①對于獨立性檢驗,的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢,其中正確的個數(shù)是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案