【題目】已知集合M是具有下列性質(zhì)的函數(shù)的全體:存在實數(shù)對,使得對定義域內(nèi)任意實數(shù)x都成立.

1)判斷函數(shù),是否屬于集合;

2)若函數(shù)具有反函數(shù),是否存在相同的實數(shù)對,使得同時屬于集合若存在,求出相應的;若不存在,說明理由;

3)若定義域為的函數(shù)屬于集合,且存在滿足有序?qū)崝?shù)對;當時,的值域為,求當時函數(shù)的值域.

【答案】12)不存在實數(shù)對,使得同時屬于集合M.見解析(3

【解析】

(1)根據(jù)已知中集合的定義,分別判斷兩個函數(shù)是否滿足條件,即可求得答案;

(2)假定,求出相應的值,得到矛盾,即可求得答案;

(3)利用題中的新定義,列出兩個等式恒成立;將x代替,兩等式結(jié)合得到函數(shù)值的遞推關(guān)系;用不完全歸納的方法求出值域.

(1)當時,

,其值不為常數(shù),

,

時,,

時,,

故存在實數(shù)對,使得對定義域內(nèi)任意實數(shù)x都成立,

;

(2)若函數(shù)具有反函數(shù),且,

,

,解得:,

此時,不存在反函數(shù),

故不存在實數(shù)對,使得同時屬于集合M.

(3)函數(shù),且存在滿足條件的有序?qū)崝?shù)對,

于是,,

替換得:,

時,,,

時,.

又由得:,

,即,

可得:.

時,,

時,,

……

依此類推可知時,,

時,,

綜上所述,時,,

時,,

綜上所述,當時函數(shù)的值域為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點且與軸不重合,直線交圓,兩點,過點的平行線交于點.

1)證明為定值,并寫出點的軌跡方程;

2)設(shè)點的軌跡為曲線,直線兩點,過點且與直線垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)區(qū)間;

如果對于任意的,總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0,f1.25)<0,則方程的根落在區(qū)間( 。

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秸稈還田是當今世界上普通重視的一項培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時還有增肥增產(chǎn)作用.某農(nóng)機戶為了達到在收割的同時讓秸稈還田,花元購買了一臺新型聯(lián)合收割機,每年用于收割可以收入萬元(已減去所用柴油費);該收割機每年都要定期進行維修保養(yǎng),第一年由廠方免費維修保養(yǎng),第二年及以后由該農(nóng)機戶付費維修保養(yǎng),所付費用(元)與使用年數(shù)的關(guān)系為:,已知第二年付費元,第五年付費元.

(1)試求出該農(nóng)機戶用于維修保養(yǎng)的費用(元)與使用年數(shù)的函數(shù)關(guān)系;

(2)這臺收割機使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費用-購買機械費用)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們可以把看作每天的"進步率都是1%,一年后是;而把看作每天的落后率都是1%,一年后是.利用計算工具計算并回答下列問題:

1)一年后進步的是落后的多少倍?

2)大約經(jīng)過多少天后進步的分別是落后10倍、100倍、1000倍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分) 已知P3,2),一直線過點P,

若直線在兩坐標軸上截距之和為12,求直線的方程;

若直線x、y軸正半軸交于A、B兩點,當面積為12時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有一批專業(yè)技術(shù)人員,對他們進行年齡狀況和接受教育程度(學歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

(1)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的學歷為研究生的概率;

(2)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個人,其中歲以下人,歲以上人,再從這個人中隨機抽取出人,此人的年齡為歲以上的概率為,求的值.

查看答案和解析>>

同步練習冊答案