(本小題滿分14分

函數(shù)實數(shù)

(I)若,求函數(shù)的單調(diào)區(qū)間;

(II)當(dāng)函數(shù)的圖象只有一個公共點(diǎn)且存在最小值時,記的最小值為,求的值域;

(III)若在區(qū)間內(nèi)均為增函數(shù),求的取值范圍。

(文)已知函數(shù) 

 (I)若函數(shù)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是,求的值;

 (II)若函數(shù)在區(qū)間上不單調(diào),求的取值范圍

 

【答案】

 

解:當(dāng)時,

   

   得:的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

   (II)函數(shù)的圖象只有一個公共點(diǎn)

      只有一個公共點(diǎn)

      存在最小值,的最小值為

    是單調(diào)遞增函數(shù)的值域為[來源:Z§xx§k.Com]

(III)①當(dāng)時,上為減函數(shù),不合題意

     ②當(dāng)時,在區(qū)間內(nèi)為增函數(shù)

         

     當(dāng)時,   在區(qū)間內(nèi)為增函數(shù)

     當(dāng)時,

     在區(qū)間內(nèi)為增函數(shù)

     當(dāng)時,內(nèi)均為增函數(shù)

(文) 解析:(Ⅰ)由題意得

  又 ,解得,

 (Ⅱ)由,得,又函數(shù)在區(qū)間不單調(diào),

,解得,所以求的取值范圍是

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案