(本題滿分16分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓
:
(
),其左、右焦點(diǎn)分別為
、
,且
、
、
成等比數(shù)列.
(1)求
的值.
(2)若橢圓
的上頂點(diǎn)、右頂點(diǎn)分別為
、
,求證:
.
(3)若
為橢圓
上的任意一點(diǎn),是否存在過(guò)點(diǎn)
、
的直線
,使
與
軸的交點(diǎn)
滿足
?若存在,求直線
的斜率
;若不存在,請(qǐng)說(shuō)明理由.
(1)由題設(shè)
及
,得
.(4分)
(2)由題設(shè)
,
,又
,得
,
,(8分)
于是
,故
.(10
分)
(3)由題設(shè),顯然直線
垂直于
軸時(shí)不合題意,設(shè)直線
的方程為
,
得
,又
,及
,得點(diǎn)
的坐標(biāo)為
,(12分)
因?yàn)辄c(diǎn)
在橢圓上,所以
,又
,得
,
,與
矛盾,故不存在滿足題意的直線
.(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分)求一條漸近線方程是
,且過(guò)點(diǎn)
的雙曲線的標(biāo)準(zhǔn)方程,并求此雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
的短軸長(zhǎng)為
,且與拋物線
有共同的焦點(diǎn),橢圓
的左頂點(diǎn)為A,右頂點(diǎn)為
,點(diǎn)
是橢圓
上位于
軸上方的動(dòng)點(diǎn),直線
,
與直線
分別交于
兩點(diǎn).
(I)求橢圓
的方程;
(Ⅱ)求線段
的長(zhǎng)度的最小值;
(Ⅲ)在線段
的長(zhǎng)度取得最小值時(shí),橢圓
上是否存在一點(diǎn)
,使得
的面積為
,若存在求出點(diǎn)
的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分14分)
橢圓
:
的離心率為
,長(zhǎng)
軸端點(diǎn)與短軸端點(diǎn)間的距離為
。
(I)求橢圓
的方程;
(II)設(shè)過(guò)點(diǎn)
的直線
與橢圓
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
為直角三角形,求直線
的斜率。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)
F1,
F2在
x軸上,長(zhǎng)軸
A1A2的長(zhǎng)為4,左準(zhǔn)線
l與
x軸的交點(diǎn)為
M,|
MA1|∶|
A1F1|=2∶1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
l1:
x=
m(|
m|>1),
P為
l1上的動(dòng)點(diǎn),使∠
F1PF2最大的點(diǎn)
P記為
Q,求點(diǎn)
Q的坐標(biāo)(用
m表示).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在用二分法解方程
時(shí),若初始區(qū)間為
,則下一個(gè)有解的區(qū)間是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
到兩坐標(biāo)軸的距離之和等于2的點(diǎn)的軌跡方程是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知雙曲線
的右焦點(diǎn)為
,則該雙曲線的漸近線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知平面內(nèi)兩定點(diǎn)
,動(dòng)點(diǎn)
滿足條件:
,設(shè)點(diǎn)
的軌跡是曲線
為坐標(biāo)原點(diǎn)。
(I)求曲線
的方程;
(II)若直線
與曲線
相交于兩不同點(diǎn)
,求
的取值范圍;
(III)(文科做)設(shè)
兩點(diǎn)分別在直線
上,若
,記
分別為
兩點(diǎn)的橫坐標(biāo),求
的最小值。
(理科做)設(shè)
兩點(diǎn)分別在直線
上,若
,求
面積的最大值。
查看答案和解析>>