已知拋物線的焦點在直線x-2y-4=0上,則此拋物線的標準方程是( )
A.y2=16
B.x2=-8y
C.y2=16x或x2=-8y
D.y2=16x或x2=8y
【答案】分析:分焦點在x軸和y軸兩種情況分別求出焦點坐標,然后根據(jù)拋物線的標準形式可得答案.
解答:解:當(dāng)焦點在x軸上時,根據(jù)y=0,x-2y-4=0可得焦點坐標為(4,0)
∴拋物線的標準方程為y2=16x
當(dāng)焦點在y軸上時,根據(jù)x=0,x-2y-4=0可得焦點坐標為(0,-2)
∴拋物線的標準方程為x2=-8y
故選C
點評:本題主要考查拋物線的標準方程.解題時注意分焦點在x軸上、焦點在y軸上兩種情形討論.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線E的頂點在原點,焦點在x軸上,開口向左,且拋物線上一點M到其焦點的最小距離為
1
4
,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點.
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等
10
時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一青蛙從點A0(x0,y0)開始依次水平向右和豎直向上跳動,其落點坐標依次是Ai(xi,yi)(i∈N*),(如圖所示,A0(x0,y0)坐標以已知條件為準),Sn表示青蛙從點A0到點An所經(jīng)過的路程.
(1)若點A0(x0,y0)為拋物線y2=2px(p>0)準線上一點,點A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且A0(
1
2
,
1
2
)
,試寫出
lim
n→+∞
Sn
(不需證明);
(3)若點An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲線上,要么落在y=2
1+8x
+1
所表示的曲線上,并且A0(0,4),求Sn的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三模擬考試理科數(shù)學(xué) 題型:解答題

(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)

一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是,(如圖所示,坐標以已知條件為準),表示青蛙從點到點所經(jīng)過的路程。

(1) 若點為拋物線準線上

一點,點,均在該拋物線上,并且直線經(jīng)

過該拋物線的焦點,證明.

(2)若點要么落在所表示的曲線上,

要么落在所表示的曲線上,并且,

試寫出(不需證明);

(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省教育考試院高考測試樣卷(理) 題型:解答題

   已知拋物線C的頂點在原點, 焦點為F(0, 1).

(Ⅰ) 求拋物線C的方程;

(Ⅱ) 在拋物線C上是否存在點P, 使得過點P的直

線交C于另一點Q, 滿足PF⊥QF, 且PQ與C

在點P處的切線垂直? 若存在, 求出點P的坐標;

若不存在, 請說明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臺州市天臺縣平橋中學(xué)高二(上)12月診斷數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線E的頂點在原點,焦點在x軸上,開口向左,且拋物線上一點M到其焦點的最小距離為,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點.
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等時,求k的值.

查看答案和解析>>

同步練習(xí)冊答案