已知函數(shù)f(x)=
log2x,x>0
3x,x≤0
,且函數(shù)h(x)=f(x)+x-a有且只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A、[1,+∞)
B、(1,+∞)
C、(-∞,1)
D、(-∞,1]
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用數(shù)形結(jié)合畫(huà)出函數(shù)y=f(x)的圖象,通過(guò)函數(shù)h(x)=f(x)+x-a有且只有一個(gè)零點(diǎn),求出a的范圍.
解答: 解:函數(shù)h(x)=f(x)+x-a有且只有一個(gè)零點(diǎn),
就是y=f(x)的圖象與y=a-x的圖象有且只有一個(gè)交點(diǎn),
如圖:顯然當(dāng)a>1時(shí),兩個(gè)函數(shù)有且只有一個(gè)交點(diǎn),
故選:B.
點(diǎn)評(píng):本題考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,考查數(shù)形結(jié)合,考查分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)集X={x1,x2,…,xn}(其中xi>0,i=1,2,…,n,n≥3),若對(duì)任意的xk∈X(k=1,2,…n),都存在xi,xj∈X(xi≠xj),使得下列三組向量中恰有一組共線:
①向量(xi,xk)與向量(xk,xj);
②向量(xi,xj)與向量(xj,xk);
③向量(xk,xi)與向量(xi,xj),則稱X具有性質(zhì)P,例如{1,2,4}具有性質(zhì)P.
(1)若{1,3,x}具有性質(zhì)P,則x的取值為
 

(2)若數(shù)集{1,3,x1,x2}具有性質(zhì)P,則x1+x2的最大值與最小值之積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A=|x|x2-x<0},B={x|x2-2x<3},則( 。
A、A∪B=B
B、A∩B=B
C、A∩B=∅
D、A∪B=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式log2(|x+1|+|x-2|-m)≥2恒成立,則實(shí)數(shù)m的取值范圍為( 。
A、(-∞,-3]
B、[-3,-1]
C、[-1,3]
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有紅、藍(lán)、黃、綠四種顏色的球各6個(gè),每種顏色的6個(gè)球分別標(biāo)有數(shù)字1、2、3、4、5、6,從中任取3個(gè)標(biāo)號(hào)不同的球,這3個(gè)顏色互不相同且所標(biāo)數(shù)字互不相鄰的取法種數(shù)為( 。
A、80B、84C、96D、104

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓O的半徑為2,△ABC是其內(nèi)接三角形,BC=3,則
AC
2
-
AB
2
的最大值為(  )
A、6B、9C、10D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=
1
3
x3+
1
2
ax2-bx,(a,b∈R)在其圖象上一點(diǎn)P(x,y)處的切線的斜率記為f(x).
(Ⅰ)若方程f(x)=0有兩個(gè)實(shí)根分別為-2和4,求
4
-2
f(x)dx;
(Ⅱ)若g(x)在區(qū)間[-1,3]上是單調(diào)遞減函數(shù),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn和1的等差中項(xiàng),等差數(shù)列{bn}滿足b1=a1,b4=S3
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
1
bnbn+1
,數(shù)列{cn}的前n項(xiàng)和為Tn,證明:Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2
,
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=
1
6
n6+
1
2
n5+
5
12
n4+An2

,…
可以推測(cè),A=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案