已知圓C的方程為x2+y2=1,直線l1過點(diǎn)A(3,0),且斜率為

(1)求證:直線l1與圓C相切;

(2)設(shè)圓C與x軸交于P、Q兩點(diǎn),M是圓C上異于P、Q的任意一點(diǎn),過點(diǎn)A且與x軸垂直的直線為l2,直線PM交直線l2于點(diǎn),直線QM交直線l2于點(diǎn);求證:以為直徑的圓總過定點(diǎn),并求出定點(diǎn)坐標(biāo).

答案:
解析:

  解:(1)∵直線過點(diǎn),斜率為;∴直線的方程為,

  即為;∴圓心到直線的距離

  即圓心C到的距離=圓的半徑1,∴直線與圓C相切.

  (2)對于圓方程,令,解得,即

  又直線過點(diǎn)且與軸垂直,∴直線方程為,設(shè),

  則直線方程為

  由方程組解得同理可得

  ∴以為直徑的圓的方程為

  又,∴整理得

  ∵當(dāng)時(shí),有,解得,∴圓總經(jīng)過定點(diǎn)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2+4x-2y=0,經(jīng)過點(diǎn)P(-4,-2)的直線l與圓C相交所得到的弦長為2,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山二模)已知圓C的方程為x2+y2+2x-2y+1=0,當(dāng)圓心C到直線kx+y+4=0的距離最大時(shí),k的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=r2,在圓C上經(jīng)過點(diǎn)P(x0,y0)的切線方程為x0x+y0y=r2.類比上述性質(zhì),則橢圓
x2
4
+
y2
12
=1
上經(jīng)過點(diǎn)(1,3)的切線方程為
x+y-4=0
x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2-2x+ay+1=0,且圓心在直線2x-y-1=0.
(1)求圓C的標(biāo)準(zhǔn)方程.
(2)若P點(diǎn)坐標(biāo)為(2,3),求圓C的過P點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4,過點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過橢圓T:
x2
a2
+
y2
b2
(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩不同點(diǎn),使得
OP
OQ
=
5
2
(O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,否則,說明理由.

查看答案和解析>>

同步練習(xí)冊答案