如圖所示,在直角梯形ABCD中,∠BAD=∠ADC=90°,CD=DA=a,AB=2a,SA⊥平面ABCD,且SA=a,

(1)求證:△SAD、△SAB、△SDC、△SCB都是直角三角形;

(2)在SD上取點(diǎn)M,SC交平面ABM于N,求證:四邊形ABNM是直角梯形;

(3)若SM=x,寫(xiě)出BM=f(x)的表達(dá)式,并求當(dāng)x為何值時(shí),BM最小?最小值是多少?

(1)證明:∵SA⊥平面ABCD,∴SA⊥AD,SA⊥AB.

∴△SAD、△SAB是直角三角形.

又CD⊥AD,

∴CD⊥SD(三垂線定理).

故△SDC是直角三角形.

在Rt△SAD中, ;

在Rt△SDC中,;

在Rt△SAB中,.

在直角梯形ABCD中,

.

∴SC2+BC2=SB2,故△SCB是直角三角形.

(2)證明:∵CD∥AB,∴CD∥平面ABNM.

又CD平面SCD,且平面SCD∩平面ABNM=MN,

∴CD∥MN.∴AB∥MN.

又MN<CD<AB,

∴四邊形ABNM為梯形.

∵AB⊥SA,AB⊥AD,

∴AB⊥平面SAD.∴AB⊥AM.

故四邊形ABNM為直角梯形.

(3)解:在△SAM中,∠ASM=45°,SA=a,SM=x,

由余弦定理得AM2=x2+a2-2axcos45°=x2+a2-.

在Rt△BAM中,,

∴當(dāng)x=時(shí),BMmin=,

即當(dāng)x為時(shí),BM最小,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
3
,曲線段DE上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線段DE的方程;
(2)過(guò)C能否作一條直線與曲線段DE相交,且所得弦以C為中點(diǎn),如果能,求該弦所在的直線的方程;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中點(diǎn),E,F(xiàn),G分別為PC,PD,CB的中點(diǎn),將△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)求二面角G-EF-D的大。
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,點(diǎn)M是棱SB的中點(diǎn),N是OC上的點(diǎn),且ON:NC=1:3.
(1)求異面直線MN與BC所成的角;
(2)求MN與面SAB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將△PCD沿折線CD折成直二面角P-CD-A,設(shè)E,F(xiàn)分別是PD,BC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAB;
(Ⅱ)求直線BE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)如圖所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中點(diǎn),F(xiàn)是DC上的點(diǎn),且EF∥AD,現(xiàn)以EF為折痕將四邊形AEFD向上折起,使平面AEFD垂直平面EBCF,連AC,DC,BA,BD,BF,

(1)求證:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案