11.已知底面半徑為r,高為4r的圓柱的側(cè)面積等于半徑為R的球的表面積,則$\frac{R}{r}$=$\sqrt{2}$.

分析 利用底面半徑為r,高為4r的圓柱的側(cè)面積等于半徑為R的球的表面積,建立方程,即可得出結(jié)論.

解答 解:設(shè)球的半徑為R,
則球的表面積S=4πR2
因?yàn)榈酌姘霃綖閞,高為4r的圓柱的側(cè)面積等于半徑為R的球的表面積,
所以8πr2=4πR2;
所以$\frac{R}{r}$=$\sqrt{2}$.
故答案為$\sqrt{2}$.

點(diǎn)評 本題考查球的表面積公式與圓柱的側(cè)面積公式,根據(jù)公式求出球和圓柱的面積是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列命題:
①函數(shù)$y=sin(2x+\frac{π}{3})$的單調(diào)減區(qū)間為$[kπ+\frac{π}{12},kπ+\frac{7π}{12}],k∈Z$;
②函數(shù)$y=\sqrt{3}cos2x-sin2x$圖象的一個(gè)對稱中心為$(\frac{π}{6},0)$;
③函數(shù)y=cosx的圖象可由函數(shù)$y=sin(x+\frac{π}{4})$的圖象向右平移$\frac{π}{4}$個(gè)單位得到;
④若方程$sin(2x+\frac{π}{3})-a=0$在區(qū)間$[0,\frac{π}{2}]$上有兩個(gè)不同的實(shí)數(shù)解x1,x2,則${x_1}+{x_2}=\frac{π}{6}$.
其中正確命題的序號(hào)為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的參數(shù)方程:$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α為參數(shù)),曲線C上的點(diǎn)M(1,$\frac{\sqrt{2}}{2}$)對應(yīng)的參數(shù)α=$\frac{π}{4}$,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)是($\sqrt{2}$,$\frac{π}{2}$),直線l過點(diǎn)P,且與曲線C交于不同的兩點(diǎn)A、B.(1)求曲線C的普通方程;
(2)求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x∈(1,+∞),2x-1-1>0,則下列敘述正確的是( 。
A.¬p為:?x∈(1,+∞),2x-1-1≤0B.¬p為:?x∈(1,+∞),2x-1-1<0
C.¬p為:?x∈(-∞,1],2x-1-1>0D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“若x>2,則x2-3x+2>0”的否命題是( 。
A.若x2-3x+2<0,則x≥2B.若x≤2,則x2-3x+2≤0
C.若x2-3x+2<0,則x≥2D.若x2-3x+2≤0,則x≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在極坐標(biāo)系中,已知圓C的方程是ρ=4,直線l的方程是$ρsin(θ+\frac{π}{4})=\sqrt{2}$.
(1)將直線l與圓C的極坐標(biāo)方程化為直角坐標(biāo)方程
(2)求直線l與圓C相交所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.8D.$\frac{128}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若橢圓上存在點(diǎn)P,滿足∠F1PF2=120°,則該橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=x${\;}^{\frac{4}{3}}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案