2.設(shè)曲線y=xn+1(n∈N+)在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為xn,則log2017x1+log2017x2+…+log2017x2016的值為-1.

分析 求出函數(shù)y=xn+1(n∈N*)的導(dǎo)數(shù),可得切線的斜率,由點斜式方程可得在(1,1)處的切線方程,取y=0求得xn,然后利用對數(shù)的運算性質(zhì)得答案.

解答 解:由y=xn+1,得y′=(n+1)xn,∴y′|x=1=n+1,
∴曲線y=xn+1(n∈N*)在(1,1)處的切線方程為y-1=(n+1)(x-1),
取y=0,得xn=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴x1x2…x2016=$\frac{1}{2}$×$\frac{2}{3}$×…×$\frac{2016}{2017}$=$\frac{1}{2017}$,
則log2017x1+log2017x2+…+log2017x2016=log2017(x1x2…x2016
=log2017$\frac{1}{2017}$=-1.
故答案為:-1.

點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,訓(xùn)練了對數(shù)的運算性質(zhì),考查轉(zhuǎn)化思想和運算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}中,已知a1=-1,S19=0,則使an>0的最小正整數(shù)n為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,}&{x<0}\\{-\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點A、B,使得曲線y=f(x)在這兩點處的切線重合,則點A的橫坐標(biāo)的取值范圍可能是( 。
A.(-$\frac{1}{2}$,0)B.(-1,-$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知不等式ax2-3x+6>4的解集為 {x|x<1或x>b}(b>1).
(1)求實數(shù)a,b的值;
(2)解不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠DAB=∠ABC=90°,AD=2BC,四棱錐P-ABCD的體積為10,點M在PD上.
(Ⅰ)求證:BC∥平面PAD;
(Ⅱ)若AM⊥PD,求證:PD⊥平面ABM;
(Ⅲ)若點M是棱PD的中點,求三棱錐B-ACM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)α1=2,α2=-3.2,則α1,α2分別是第二象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若α是第二象限角,則$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}$的值等于( 。
A.cos2$\frac{α}{2}$B.sin2$\frac{α}{2}$C.cos2αD.sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{3}(n∈{N^*})$
(1)求an;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.有關(guān)部門要了解甲型H1N1流感預(yù)防知識在學(xué)校的普及情況,命制了一份有10道題的問卷到各學(xué)校做問卷調(diào)查.某中學(xué)A、B兩個班各被隨機抽取5名學(xué)生接受問卷調(diào)查,A班5名學(xué)生得分為:5、8、9、9、9,B班5名學(xué)生得分為:6、7、8、9、10.
(1)請你判斷A、B兩個班中哪個班的問卷得分要穩(wěn)定一些,并說明你的理由;
(2)求如果把B班5名學(xué)生的得分看成一個總體,并用簡單隨機抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對值不小于1的概率.

查看答案和解析>>

同步練習(xí)冊答案