(極坐標(biāo)與參數(shù)方程)已知點(diǎn)P(x,y)是曲線C上的點(diǎn),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,若曲線C的極坐標(biāo)方程為ρ2+4ρcosθ-5=0,則使
3
x-y+a≥0恒成立的實(shí)數(shù)a的取值范圍為
[6+2
3
,+∞)
[6+2
3
,+∞)
分析:曲線C的極坐標(biāo)方程,化為直角坐標(biāo)方程,設(shè)出P的坐標(biāo),分離參數(shù)求最值,即可確定實(shí)數(shù)a的取值范圍.
解答:解:曲線C的極坐標(biāo)方程為ρ2+4ρcosθ-5=0,直角坐標(biāo)方程為x2+y2+4x-5=0,即(x+2)2+y2=9
∴可令x=-2+3cosθ,y=3sinθ
3
x-y+a≥0恒成立,等價(jià)于a≥-
3
x+y恒成立,即a≥2
3
-3
3
cosθ+3sinθ
∵2
3
-3
3
cosθ+3sinθ=2
3
+6sin(θ-
π
3

∴(2
3
-3
3
cosθ+3sinθ)max=6+2
3

∴a≥6+2
3

故答案為:[6+2
3
,+∞)
點(diǎn)評(píng):本題考查曲線的極坐標(biāo)方程,考查恒成立問題,考查函數(shù)的最值,正確分離參數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:極坐標(biāo)與參數(shù)方程)
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線l的參數(shù)方程為
x=tcosα
y=1+tsinα
(t為參數(shù),0≤α<π).
(Ⅰ)化曲線C的極坐標(biāo)方程為直角坐標(biāo)方程;
(Ⅱ)若直線l經(jīng)過點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(極坐標(biāo)與參數(shù)方程)
已知直線l經(jīng)過點(diǎn)P(2,1),傾斜角α=
π4
,
(Ⅰ)寫出直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與圓O:ρ=2相交于兩點(diǎn)A,B,求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,已知A(1,0)B(1,
π
2
)點(diǎn)P在曲線ρcos2θ+4cosθ=ρ上,則|PA|+|PB|最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對(duì)應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣州模擬)(極坐標(biāo)與參數(shù)方程選做題)
在極坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2
2
π
4
)
,曲線C的方程為ρ=2cosθ,則OA(O為極點(diǎn))所在直線被曲線C所截弦的長(zhǎng)度為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案