【題目】已知函數(shù).
(1)討論函數(shù)y=f(x)在∈(m,+∞)上的單調(diào)性;
(2)若,則當(dāng)x∈[m,m+1]時(shí),函數(shù)y= f(x)的圖象是否總在函數(shù)圖象上方?請(qǐng)寫出判斷過(guò)程.
【答案】(1) 在(m,m+1)上單調(diào)遞減,在(m+1,+∞)上單調(diào)遞增; (2)見(jiàn)解析.
【解析】
(1)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)由(1)知在上單調(diào)遞減,所以其最小值為.因?yàn)?/span>在上的最大值為.所以只需判斷與的大小,其中.
(1) ,
當(dāng)x∈(m,m+1)時(shí),,當(dāng)x∈(m+1,+∞)時(shí),,
所以f(x)在(m,m+1)上單調(diào)遞減,在(m+1,+∞)上單調(diào)遞增.
(2)由(1)知f(x)在[m,m+1]上單調(diào)遞減,
所以其最小值為.
因?yàn)?/span>在上的最大值為.
所以下面判斷f(m+1)與的大小,即判斷與(1+x)x的大小,其中.
令,則,
令,則,
因?yàn)?/span>,所以,單調(diào)遞增,
所以,
故存在,使得.
所以k(x)在上單調(diào)遞減,在上單調(diào)遞增.
所以.
所以當(dāng)時(shí),,
即,也即,
所以函數(shù)y=f(x)的圖象總在函數(shù)圖象上方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,AB=1,PA=2,E為PB的中點(diǎn),點(diǎn)F在棱PC上,且PF=λPC.
(1)求直線CE與直線PD所成角的余弦值;
(2)當(dāng)直線BF與平面CDE所成的角最大時(shí),求此時(shí)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時(shí)間在晚上的男嬰為24人,女嬰為8人;出生時(shí)間在白天的男嬰為31人,女嬰為26人.
(1)將2×2列聯(lián)表補(bǔ)充完整.
性別 | 出生時(shí)間 | 總計(jì) | |
晚上 | 白天 | ||
男嬰 | |||
女嬰 | |||
總計(jì) |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為嬰兒性別與出生時(shí)間有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知球O是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)A﹣BCD的外接球,BC=3,AB=2 ,點(diǎn)E在線段BD上,且BD=3BE,過(guò)點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的長(zhǎng)軸長(zhǎng)為6,且橢圓C與圓M:(x﹣2)2+y2= 的公共弦長(zhǎng)為 .
(1)求橢圓C的方程,
(2)過(guò)點(diǎn)P(0,2)作斜率為k(k≠0)的直線l與橢圓C交于兩點(diǎn)A,B,試判斷在x軸上是否存在點(diǎn)D,使得△ADB為以AB為底邊的等腰三角形,若存在,求出點(diǎn)D的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校期中考試后,按照學(xué)生的數(shù)學(xué)考試成績(jī)優(yōu)秀和不優(yōu)秀進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
優(yōu)秀 | 不優(yōu)秀 | 總計(jì) | |
文科 | 60 | 140 | 200 |
理科 | 265 | 335 | 600 |
總計(jì) | 325 | 475 | 800 |
(1)畫出列聯(lián)表的等高條形圖,并通過(guò)圖形判斷數(shù)學(xué)成績(jī)與文理分科是否有關(guān);
(2)利用獨(dú)立性檢驗(yàn),分析文理分科對(duì)學(xué)生的數(shù)學(xué)成績(jī)是否有影響.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年備受矚目的二十國(guó)集團(tuán)領(lǐng)導(dǎo)人第十一次峰會(huì)于9月4~5日在杭州舉辦,杭州G20籌委會(huì)已經(jīng)招募培訓(xùn)翻譯聯(lián)絡(luò)員1000人、駕駛員2000人,為測(cè)試培訓(xùn)效果,采取分層抽樣的方法從翻譯聯(lián)絡(luò)員、駕駛員中共隨機(jī)抽取60人,對(duì)其做G20峰會(huì)主題及相關(guān)服務(wù)職責(zé)進(jìn)行測(cè)試,將其所得分?jǐn)?shù)(分?jǐn)?shù)都在60~100之間)制成頻率分布直方圖如下圖所示,若得分在90分及其以上(含90分)者,則稱其為“G20通”.
(Ⅰ)能否有90%的把握認(rèn)為“G20通”與所從事工作(翻譯聯(lián)絡(luò)員或駕駛員)有關(guān)?
(Ⅱ)從參加測(cè)試的成績(jī)?cè)?0分以上(含80分)的駕駛員中隨機(jī)抽取4人,4人中“G20通”的人數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附參考公式與數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)橢圓C:+=1(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值b2﹣a2.
(2)由(1)類比可得如下真命題:雙曲線C:=1(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則為定值.請(qǐng)寫出這個(gè)定值(不要求給出解題過(guò)程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體服裝店經(jīng)營(yíng)某種服裝,該服裝店每天所獲利潤(rùn)y(元)與每天售出這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)求利潤(rùn)y與每天售出件數(shù)x之間的回歸方程 (回歸直線的斜率用分?jǐn)?shù)表示).
(2)若該服裝店某天銷售服裝13件,估計(jì)可獲利潤(rùn)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com