若直線l:y+1=k(x-2)被圓C:x2+y2-2x-24=0截得的弦AB最短,則直線AB的方程是 .
科目:高中數(shù)學(xué) 來源:2012屆湖北省荊州中學(xué)高三第一次教學(xué)質(zhì)量檢測理科數(shù)學(xué) 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),實軸長為2
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點,求k的取值范圍
(3)在(2)的條件下,線段AB的垂直平分線l0與y軸交于M(0,m),求m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三第一次教學(xué)質(zhì)量檢測理科數(shù)學(xué) 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),實軸長為2
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點,求k的取值范圍
(3)在(2)的條件下,線段AB的垂直平分線l0與y軸交于M(0,m),求m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第一次摸底考試理科數(shù)學(xué) 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),實軸長為2.
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點,求k的取值范圍;
(3)在(2)的條件下,線段AB的垂直平分線l0與y軸交于M(0,m),求m的取值范圍.
[來源:]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若直線l:y=k(x-2)-1被圓C:x2+y2-2x-24=0截得的弦AB最短,則直線AB的方程是( )
(A)x-y-3=0 (B)2x+y-3=0
(C)x+y-1=0 (D)2x-y-5=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com