【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)是棱的中點(diǎn).

1)求證:平面;

2)求二面角的余弦值;

3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)證明見(jiàn)解析(2)(3)存在,.

【解析】

1)根據(jù)線(xiàn)面垂直的判定定理,即可證得平面.

2)以為原點(diǎn),分別以,的方向?yàn)?/span>軸的正方向建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解;

3)假設(shè)存在點(diǎn),設(shè),根據(jù),得到的坐標(biāo),結(jié)合平面的法向量為列出方程,即可求解.

1)由題意,因?yàn)?/span>,,,∴,

又∴,∴,

側(cè)面,∴.

又∵,平面

∴直線(xiàn)平面.

2)以為原點(diǎn),分別以的方向?yàn)?/span>,軸的正方向建立如圖所示的空間直角坐標(biāo)系,

則有,,,

設(shè)平面的一個(gè)法向量為

,∴,令,則,∴

設(shè)平面的一個(gè)法向量為,,,

,∴,令,則,∴

,,,∴.

設(shè)二面角,則.

∴設(shè)二面角的余弦值為.

3)假設(shè)存在點(diǎn),設(shè),∵,,

,∴

設(shè)平面的一個(gè)法向量為,

,得.

,∴,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

15

0.30

29

2

合計(jì)

1

1)求出表中,及圖中的值;

2)若該校高三學(xué)生人數(shù)有500人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);

3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若是函數(shù)的極值點(diǎn),求的極小值;

2)若對(duì)任意的實(shí)數(shù)a,函數(shù)上總有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面是邊長(zhǎng)為2的等邊三角形且垂直于底面,,的中點(diǎn).

1)求證:直線(xiàn)平面;

2)點(diǎn)在棱上,且二面角的余弦值為,求直線(xiàn)與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,且.

1)求證:平面平面

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其導(dǎo)函數(shù)為.

1)討論函數(shù)的單調(diào)性;

2)若,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)有兩個(gè)零點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到直線(xiàn)的距離比到點(diǎn)的距離大

1)求動(dòng)點(diǎn)的軌跡的方程;

2上兩點(diǎn),為坐標(biāo)原點(diǎn),,過(guò)分別作的兩條切線(xiàn),相交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線(xiàn)lt為參數(shù))與曲線(xiàn)Cθ為參數(shù))相交于不同的兩點(diǎn)AB

)若α,求線(xiàn)段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線(xiàn)l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為常數(shù), ,函數(shù), (其中是自然對(duì)數(shù)的底數(shù)).

(1)過(guò)坐標(biāo)原點(diǎn)作曲線(xiàn)的切線(xiàn),設(shè)切點(diǎn)為,求證: ;

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案