x(1+x)(1+x210展開(kāi)式中x4的系數(shù)為


  1. A.
    45
  2. B.
    10
  3. C.
    90
  4. D.
    50
B
分析:由于x(1+x)(1+x210=(x2+x)((1+x)10,要求展開(kāi)式的x4,結(jié)合(1+x)10展開(kāi)式的通項(xiàng)Tr+1=C10rx2r,只要令2r=2即可
解答:x(1+x)(1+x210=(x2+x)((1+x)10
(1+x)10展開(kāi)式的通項(xiàng)Tr+1=C10rx2r,令2r=2可得r=1,此時(shí)T2=10x2,令2r=3的r不存在
展開(kāi)式中含x4的項(xiàng)的系數(shù)為10
故選:B
點(diǎn)評(píng):本題主要考查了利用二項(xiàng)展開(kāi)式的通項(xiàng)求解指定項(xiàng),解題的關(guān)鍵是利用通項(xiàng),屬于公式的簡(jiǎn)單應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、若函數(shù)f(x)在R上的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),x∈[0,+∞)時(shí),f(x)=x(1-x),則x∈(-∞,0]時(shí)f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的單調(diào)區(qū)間;
(2)若x∈[
1
e
-1,e-1]
時(shí),f(x)<m恒成立,求m的取值范圍;
(3)若設(shè)函數(shù)g(x)=
1
2
x2+
1
2
x+a
,若g(x)的圖象與f(x)的圖象在區(qū)間[0,2]上有兩個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省無(wú)錫市輔仁高級(jí)中學(xué)2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044

對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a·f1(x)+b·f2(x),那么稱(chēng)h(x)為f1(x),f2(x)的生成函數(shù).

(Ⅰ)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說(shuō)明理由;

第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)設(shè)f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;

(Ⅲ)設(shè)f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函數(shù)h(x)使h(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省無(wú)錫市輔仁高級(jí)中學(xué)2012屆高三第一次模擬考試數(shù)學(xué)理科試題 題型:044

對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a·f1(x)+b·f2(x),那么稱(chēng)h(x)為f1(x),f2(x)的生成函數(shù).

(Ⅰ)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說(shuō)明理由;

第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+);

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;

(Ⅱ)設(shè)f1(x)=log2x,f2(x)=logx,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;

(Ⅲ)設(shè)f1(x)=x,f2(x)=(1≤x≤10),取a=1,b>0,生成函數(shù)h(x)使h(x)≥b恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知函數(shù)f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的單調(diào)區(qū)間;
(2)若x∈[
1
e
-1,e-1]
時(shí),f(x)<m恒成立,求m的取值范圍;
(3)若設(shè)函數(shù)g(x)=
1
2
x2+
1
2
x+a
,若g(x)的圖象與f(x)的圖象在區(qū)間[0,2]上有兩個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案