分析 由已知及正弦定理可得sinB的值,結(jié)合B為三角形內(nèi)角,利用特殊角的三角函數(shù)值即可得解.
解答 解:∵a=4,b=4$\sqrt{3}$,∠A=30°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{4\sqrt{3}×\frac{1}{2}}{4}$=$\frac{\sqrt{3}}{2}$,
又∵B為三角形內(nèi)角,
∴B=$\frac{π}{3}$,或$\frac{2π}{3}$.
故答案為:$\frac{π}{3}$,或$\frac{2π}{3}$.
點(diǎn)評 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$•$\overrightarrow$=2 | B. | $\overrightarrow{a}$∥$\overrightarrow$ | C. | |$\overrightarrow{a}$|=|$\overrightarrow$| | D. | $\overrightarrow$⊥($\overrightarrow{a}$+$\overrightarrow$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 150° | B. | 135° | C. | 300° | D. | 60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{1}{2},\sqrt{e}})$ | B. | $[{\frac{1}{2},\sqrt{e}})$ | C. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$ | D. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com