4.函數(shù)f(x)=$\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}$-2ax+2a+1圖象經(jīng)過四個(gè)象限的必要而不充分條件是( 。
A.-$\frac{4}{3}$<x<-$\frac{1}{3}$B.-2<a<0C.-$\frac{6}{5}$<a<-$\frac{3}{16}$D.-1<a<-$\frac{1}{2}$

分析 由f(x),求導(dǎo),f′(x)=ax2+ax-2a=a(x-1)(x+2),由題意可知:f(-2)<0,且f(1)>0,即可求得a的取值范圍,根據(jù)a的取值范圍,根據(jù)集合的關(guān)系,即可求得函數(shù)f(x)圖象經(jīng)過四個(gè)象限的必要而不充分條件為-2<a<0.

解答 解:由f(x)=$\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}$-2ax+2a+1,求導(dǎo)f′(x)=ax2+ax-2a=a(x-1)(x+2).
若a<0,令f′(x)<0,解得:x<-2或x>1,
令f′(x)>0,解得:-2<x<1,
由題意可知:f(-2)<0,且f(1)>0,
$\left\{\begin{array}{l}{\frac{1}{3}a(-2)^{3}+\frac{1}{2}a(-2)^{2}-2a(-2)+2a+1<0}\\{\frac{1}{3}a+\frac{1}{2}a-2a+2a+1>0}\end{array}\right.$,
解得:-$\frac{6}{5}$<a<-$\frac{3}{16}$,
若a≥0,則無解,
∴數(shù)f(x)=$\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}$-2ax+2a+1圖象經(jīng)過四個(gè)象限的充要條件為{a丨-$\frac{6}{5}$<a<-$\frac{3}{16}$},
由題意可知:函數(shù)f(x)圖象經(jīng)過四個(gè)象限的必要而不充分條件為:-2<a<0.
故選:B.

點(diǎn)評 本題考查函數(shù)與導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,考查充分條件及必要條件之間的關(guān)系,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知A={x|x2-2x-3<0},B={x||x-1|<a}.
(1)若A?B,求實(shí)數(shù)a的取值范圍;
(2)若B?A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x||x-2|≥1},集合B={x|$\frac{1}{x}$<1},則A∩B=(-∞,0)∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知矩陣M=$|\begin{array}{l}{2}&{3}\\{a}&{1}\end{array}|$的一個(gè)特征值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)扇形OAB的面積是1cm2,它的周長是4cm,則弦長AB=( 。
A.2B.2sin 1C.2sin 2D.sin 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知log2b<log2a<log2c,則( 。
A.($\frac{1}{2}$)b>($\frac{1}{2}$)a>($\frac{1}{2}$)cB.($\frac{1}{2}$)a>($\frac{1}{2}$)b>($\frac{1}{2}$)cC.($\frac{1}{2}$)c>($\frac{1}{2}$)b>($\frac{1}{2}$)aD.($\frac{1}{2}$)c>($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a<0,關(guān)于x的一元二次不等式ax2-(2+a)x+2>0的解集為(  )
A.{x|x<$\frac{2}{a}$或x>1}B.{x|$\frac{2}{a}$<x<1}C.{x|x<1或x>$\frac{2}{a}$}D.{x|1<x<$\frac{2}{a}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{3}$sinωx-cosωx+m(ω>0,x∈R,m是常數(shù))的圖象上的一個(gè)最高點(diǎn)$(\frac{π}{3},1)$,且與點(diǎn)$(\frac{π}{3},1)$最近的一個(gè)最低點(diǎn)是$(-\frac{π}{6},-3)$.
(Ⅰ)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}=-\frac{1}{2}$ac,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓心坐標(biāo)為$(1,\sqrt{3})$的圓M與y軸及直線y=$\frac{{\sqrt{3}}}{3}$x相切于A、B兩點(diǎn),另一圓N1與圓M外切(圓N1在圓M的斜上方),且與y軸及直線y=$\frac{{\sqrt{3}}}{3}$x分別切于C、D兩點(diǎn).(如圖)
(1)求圓N1的方程.
(2)求線段AC的長.
(3)仿N1作一系列圓Nk(k≥2)圓Nk與圓Nk-1外切,(圓Nk在圓Nk-1的斜上方)與y軸及y=$\frac{{\sqrt{3}}}{3}$x相切,圓Nk的圓心坐標(biāo)為(xk,yk),求數(shù)列{xk}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案