f(x)=3sin(k≠0),有一條對(duì)稱(chēng)軸為x=,求k.
【答案】分析:由三角函數(shù)的對(duì)稱(chēng)性可知,在對(duì)稱(chēng)軸處將取得函數(shù)的最值,則有可得,可得k的值
解答:解:∵f(x)=3sin(的一條對(duì)稱(chēng)軸為x=


解得k=30m+5 m∈Z
點(diǎn)評(píng):本題主要考查三角函數(shù)y=Asin(wx+∅)(A>0,w>0)的對(duì)稱(chēng)性:對(duì)稱(chēng)軸的值滿(mǎn)足函數(shù)取得最值(最大值或最小值)從而有對(duì)稱(chēng)軸的值滿(mǎn)足
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3sin(x+100)+5sin(x+700)的最大值是( 。
A、5.5B、6.5C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=3sin(2x+?)+a,對(duì)任意實(shí)數(shù)x都有f(
π
3
+x)=f(
π
3
-x)
,且f(
π
3
)=-4
,則實(shí)數(shù)a的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3sin(2x-
π
3
),g(x)=4sin(2x+
π
3
)
,則函數(shù)y=f(x)+g(x)的最大值為
13
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(π-x)+cosx
(1)求f(
π
3
);
(2)求f(x)的值域;
(3)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f (x)=
3
sin xcos x-cos2x-
1
2
,x∈R.
(1)求函數(shù)f (x)的最小值和最小正周期;
(2)若函數(shù)g (x)的圖象與函數(shù)f (x)的圖象關(guān)于y軸對(duì)稱(chēng),記F (x)=f (x)+g (x),求F (x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案