2.在△ABC中,sinA:sinB:sinC=4:3:2,則最大角的余弦值是( 。
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

分析 由正弦定理可得a:b:c=4:3:2,進(jìn)而可用b表示a,c,代入余弦定理化簡可得.

解答 解:∵sinA:sinB:sinC=4:3:2,
∴由正弦定理可得a:b:c=4:3:2,可得a最大,A為最大角,
∴a=$\frac{4b}{3}$,c=$\frac{2b}{3}$,
由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+\frac{4^{2}}{9}-\frac{16^{2}}{9}}{2b×\frac{2b}{3}}$=-$\frac{1}{4}$.
故選:B.

點評 本題考查正余弦定理的應(yīng)用,用a表示b,c是解決問題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E,F(xiàn)為CD上任意兩點,且EF的長為定值,則以下四個值中為定值的編號是①②④.
①點P到平面QEF的距離;
②三棱錐P-QEF的體積;
③直線PQ與平面PEF所成的角;
④二面角P-EF-Q的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知角α的終邊過點P(2a,a)(a<0),求角α的終邊與單位圓的交點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={1,2,3,4},B={2,4,5},則A∩B=( 。
A.{2}B.{2,4}C.{2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,則sinβ的值是( 。
A.$\frac{63}{65}$B.$\frac{33}{65}$C.$\frac{16}{65}$D.$-\frac{33}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一輛卡車寬2.7米,要經(jīng)過一個半徑為4.5米的半圓形隧道,該隧道為雙向車道,中間有隔離帶,則這輛卡車的平頂車篷篷頂距離地面的高度不得超過( 。
A.1.4米B.3.0米C.3.6米D.4.5米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)y=f(n)滿足f(n)=$\left\{\begin{array}{l}{2(n=1)}\\{3f(n-1)(n≥2)}\end{array}\right.$,則f(3)=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將點p(-2,2)變換為p′(-4,1)的伸縮變換公式為( 。
A.$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=2y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=2y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{2}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑.若該幾何體的體積是$\frac{224π}{3}$,則它的表面積是( 。
A.17πB.18πC.60πD.68π

查看答案和解析>>

同步練習(xí)冊答案