14.若sinα+$\sqrt{3}$cosα=2,則tan(π+α)=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 sinα+$\sqrt{3}$cosα=2,利用和差公式化簡可得α,代入tan(π+α)即可得出.

解答 解:∵sinα+$\sqrt{3}$cosα=2,
∴$2(\frac{1}{2}sinα+\frac{\sqrt{3}}{2}cosα)$=2,可得$sin(α+\frac{π}{3})$=1,
∴α+$\frac{π}{3}$=2$kπ+\frac{π}{2}$,k∈Z.
∴$α=2kπ+\frac{π}{6}$,
則tan(π+α)=tanα=$tan(2kπ+\frac{π}{6})$=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
故選:D.

點評 本題考查了和差公式、誘導(dǎo)公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四個命題:
①?x0∈R,使${x_0}^2+2{x_0}+3=0$;
②命題“?x0∈R,lgx0>0”的否定是“?x∈R,lgx<0”;
③如果a,b∈R,且a>b,那么a2>b2;
④“若α=β,則sinα=sinβ”的逆否命題為真命題.
其中正確的命題是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)1-2i的虛部是(  )
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(4-x).x<0}\\{{2}^{x-1},x≥0}\end{array}\right.$則f(log214)+f(-4)的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z滿足$\frac{z}{1+i}=1-i$(i為純虛數(shù)),那么復(fù)數(shù)z=( 。
A.1B.2C.iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.動點P,Q從點A(1,0)出發(fā)沿單位圓運動,點P按逆時針方向每秒鐘轉(zhuǎn)$\frac{π}{3}$弧度,點Q按順時針方向每秒鐘轉(zhuǎn)$\frac{π}{6}$弧度,設(shè)P,Q第一次相遇時在點B,則B點的坐標(biāo)為(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知Sn為各項均為正數(shù)的數(shù)列{an}的前n項和,a1∈(0,2),an2+3an+2=6Sn
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn,若對?n∈N*,t≤4Tn恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線l1、l2的方向向量分別為$\vec a=(1,-3,-1)$,$\vec b=(8,2,2)$,則( 。
A.l1⊥l2B.l1∥l2
C.l1與l2相交不平行D.l1與l2重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在兩坐標(biāo)軸上截距均為m(m∈R)的直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,則m=( 。
A.$\frac{7}{2}$B.7C.-$\frac{1}{2}$或$\frac{7}{2}$D.-1或7

查看答案和解析>>

同步練習(xí)冊答案