【題目】如圖,四棱錐 底面 為菱形,平面 平面 , , , , 為 的中點(diǎn).
(1)證明: ;
(2)二面角 的余弦值.
【答案】
(1)解:取 的中點(diǎn) ,連接 為菱形, ,
分別為 的中點(diǎn), .
為 的中點(diǎn), ,
又 面 面 ,
面 面 面 ,
,
面
(2)解:連接 為菱形,
為等邊三角形, 為 的中點(diǎn), ,
面 兩兩垂直.
以 分別為 軸、 軸、 軸建立如圖所示的空間直接坐標(biāo)系 ,則 為面 的法向量,
設(shè)面 的法向量 ,
則 即 ,取 ,則 , ,
,
結(jié)合圖形可知二面角 的余弦值為
【解析】(1)根據(jù)題目中所給的條件的特點(diǎn),取AD的中點(diǎn)O,連接OP,OE,BD,由已知可得BD⊥AC,又O、E分別為AD,AB的中點(diǎn),可得OE∥BD,得到AC⊥OE.再由PA=PD,O為AD的中點(diǎn),得到PO⊥AD,結(jié)合面面垂直的性質(zhì)可得PO⊥AC,再由線面垂直的判定可得AC⊥面POE,從而得到AC⊥PE;
(2)用空間向量求平面間的夾角. 以O(shè)A、OB、OP分別為x軸、y軸、z軸建立如圖所示的空間直接坐標(biāo)系O-xyz,得到A,B,P的坐標(biāo),可得平面PAD的一個(gè)法向量,再求得面PAB的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角D-PA-B的余弦值.訓(xùn)練了利用空間向量求解二面角的平面角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求證: ;
(3)是否存在正整數(shù),使得對任意正整數(shù)均成立?若存在,求出的最大值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)證明:f(x)+|f(x)﹣2|≥2;
(2)當(dāng)x≠﹣1時(shí),求y= 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱中,已知,分別為,的中點(diǎn),點(diǎn)在棱上,且.求證:
(1)直線∥平面;
(2)直線平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|log2x>2}, ,則下列結(jié)論成立的是( )
A.A∩B=A
B.(RA)∩B=A
C.A∩(RB)=A
D.(RA)∩(RB)=A
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校10位同學(xué)組成的志愿者組織分別由李老師和楊老師負(fù)責(zé).每次獻(xiàn)愛心活動(dòng)均需該組織4位同學(xué)參加.假設(shè)李老師和楊老師分別將各自活動(dòng)通知的信息獨(dú)立、隨機(jī)地發(fā)給4位同學(xué),且所發(fā)信息都能收到.則甲同學(xué)收到李老師或楊老師所發(fā)活動(dòng)通知信息的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) = ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.[- ,1)
B.[- , )
C.[ , )
D.[ ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2a﹣b>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( )x的零點(diǎn)個(gè)數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com