【題目】某舉重運(yùn)動(dòng)隊(duì)為了解隊(duì)員的體重分布情況,從50名隊(duì)員中抽取10名作調(diào)查.抽取時(shí)現(xiàn)將全體隊(duì)員隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,每組抽一名,且各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.
(1)若第5組抽出的號(hào)碼為22,寫(xiě)出所有被抽取出來(lái)的編號(hào);
(2)分別統(tǒng)計(jì)被抽取的10名隊(duì)員的體重(單位:公斤),獲得如圖所示的體重?cái)?shù)據(jù)的莖葉圖,根據(jù)莖葉圖求該樣本的平均數(shù)和中位數(shù);
(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊(duì)員中隨機(jī)抽取2名隊(duì)員的體重?cái)?shù)據(jù),求體重為81公斤的隊(duì)員被抽到的概率.
【答案】(1)2,7,12,17,22,27,32,37,42,47;(2)平均數(shù)為71,中位數(shù)為71.5;(3).
【解析】試題分析:(1) 各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣,且第5組抽出的號(hào)碼為22,可得抽出的10名職工號(hào)碼;(2) 被抽取的10名隊(duì)員的體重求和再除以10可得平均數(shù),再由定義計(jì)算中位數(shù);(3)寫(xiě)出從10名職工中隨機(jī)抽取兩名體重不輕于73公斤的隊(duì)員的取法,進(jìn)而可得體重為81公斤的隊(duì)員的取法,根據(jù)古典概型計(jì)算公式計(jì)算即可.
試題解析:
(1)依題意若第5組抽出的號(hào)碼為22,則所有被抽出的隊(duì)員編號(hào)為:
2,7,12,17,22,27,32,37,42,47
(2)由莖葉圖數(shù)據(jù)可求得該樣本的平均數(shù)為:
(公斤),
中位數(shù)為(公斤).
(3)設(shè)“體重為81公斤的隊(duì)員被抽到”為事件,
若從體重不輕于73公斤的隊(duì)員中隨機(jī)抽取2名隊(duì)員的體重?cái)?shù)據(jù),所有可能的情況如下:
, , , , , , , , , 共10種,且每種被抽到的可能性相同,又體重為81公斤的隊(duì)員被抽到的情況有: , , , 共4種,所以由古典概型的概率公式有.
答:體重為81公斤的隊(duì)員被抽到的概率為.
點(diǎn)睛:本題考查莖葉圖與古典概型. 古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本事件的探求.對(duì)于基本事件有“有序”與“無(wú)序”區(qū)別的題目,常采用樹(shù)狀圖法.(3)列表法:適用于多元素基本事件的求解問(wèn)題,通過(guò)列表把復(fù)雜的題目簡(jiǎn)單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素?cái)?shù)目較多的題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高二年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計(jì)了他們的化學(xué)成績(jī)(成績(jī)均為整數(shù)且滿(mǎn)分為100分),把其中不低于50分的分成五段,,…,后畫(huà)出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求出這60名學(xué)生中化學(xué)成績(jī)低于50分的人數(shù);
(2)估計(jì)高二年級(jí)這次考試化學(xué)學(xué)科及格率(60分以上為及格);
(3)從化學(xué)成績(jī)不及格的學(xué)生中隨機(jī)調(diào)查1人,求他的成績(jī)低于50分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí), (萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí), (萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分10分)已知是公差不為零的等差數(shù)列, ,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng);
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下圖中,四邊形 ABCD是等腰梯形, , , 于M、交EF于點(diǎn)N, , ,現(xiàn)將梯形ABCD沿EF折起,記折起后C、D為、且使,如圖示.
(Ⅰ)證明: 平面ABFE;,
(Ⅱ)若圖6中, ,求點(diǎn)M到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下圖中,四邊形 ABCD是等腰梯形, , ,O、Q分別為線(xiàn)段AB、CD的中點(diǎn),OQ與EF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.
(Ⅰ)證明:平面ABCD平面ABFE;
(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問(wèn)卷調(diào)查,其中每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間超過(guò)3小時(shí)的學(xué)生稱(chēng)為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:
古文迷 | 非古文迷 | 合計(jì) | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認(rèn)為“古文迷”與性別有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.、是橢圓的左、右頂點(diǎn),直線(xiàn)過(guò)點(diǎn)且與軸垂直.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上異于、的任意一點(diǎn),作軸于點(diǎn),延長(zhǎng)到點(diǎn)使得,連接并延長(zhǎng)交直線(xiàn)于點(diǎn),為線(xiàn)段的中點(diǎn),判斷直線(xiàn)與以為直徑的圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com