18.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點.
(1)求證:平面PDC⊥平面PAD;
(2)求證:PB∥平面EAC;
(3)求三棱錐E-ACD的體積.

分析 (1)推導(dǎo)出PA⊥CD,AD⊥CD,由此能證明平面PDC⊥平面PAD.
(2)連結(jié)BD交AC于O,連結(jié)OE,推導(dǎo)出PB∥EO,由此能證明PB∥平面EAC.
(3)由AB=2,BC=4,且底面是矩形,點E到平面ACD的高為1,能求出三棱錐E-ACD的體積.

解答 證明:(1)∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD.
又∵四邊形ABCD是矩形,∴AD⊥CD.…(2分)
又PA∩AD=A,PA,AD?平面PAD,∴CD⊥平面PAD.
又∵CD?平面PDC,∴平面PDC⊥平面PAD…(4分)
(2)連結(jié)BD交AC于O,連結(jié)OE
因為E、O分別是PD、BD的中點
所以PB∥EO
所以PB∥平面EAC…(7分)
解:(3)因為AB=2,BC=4,且底面是矩形
所以△ACD的面積為4,…(9分)
因為E是PD的中點,所以點E到平面ACD的高為1
所以VE-ACD=$\frac{1}{3}×4×1=\frac{4}{3}$.…(12分)

點評 本題考查面面垂直的證明,考查線面平行的證明,考查三椎錐的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知角α的終邊經(jīng)過點P(-1,2),則tanα的值是( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直角三角形ABC中,∠ACB=90°,AC=4,BC=3,點D,E分別線段AC,AB上,線段DE分三角形ABC為面積相等的兩部分,設(shè)AD=x,DE=y.
(1)求y與x之間的函數(shù)關(guān)系式;(不要求寫定義域)
(2)求y的最小值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在長方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,A1A=AD=1,
求:(1)A1C與平面ABCD所成角的大;
(2)平面A1D1DA與平面A1D1CB所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)凸n邊形的對角線條數(shù)為f(n),若凸n+1邊形的對角線條數(shù)f(n+1)=f(n)+m,則m的表達式為( 。
A.n+1B.nC.n-1D.n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知隨機變量X的概率分布如下:
X1234
P0.10.40.20.3
則V(X)=1.01.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.隨機變量X的概率分布如下表,則X的方差V(X)為$\frac{3}{4}$
X0123
P$\frac{1}{8}$$\frac{3}{8}$$\frac{3}{8}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某高中畢業(yè)學(xué)年,在高校自主招生期間,把學(xué)生的平時成績按“百分制”折算,排出前100名學(xué)生,并對這100名學(xué)生按成績分組(從低到高依次分為第1組、第2組、第3組、第4組、第5組),其頻率分布直方圖如圖:現(xiàn)Q大學(xué)決定在第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進行面試,且本次面試中有B、C、D三位考官.
(1)若規(guī)定至少獲得兩位考官的認可即面試成功,且面試結(jié)果相互獨立,已知甲同學(xué)已經(jīng)被抽中,并且通過這三位考官面試的概率依次為$\frac{1}{2},\frac{1}{3}$,$\frac{1}{4}$,求甲同學(xué)面試成功的概率;
(2)若Q大學(xué)決定在這6名學(xué)生中隨機抽取3名學(xué)生接受考官B的面試,設(shè)第4組中有ξ名學(xué)生被考官B面試,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某權(quán)威機構(gòu)發(fā)布了2014年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,該市某校學(xué)生會組織部分同學(xué),用“10分制”隨機調(diào)查“陽光”社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸福”.求從這16人中隨機選取3人,至多有1人是“極幸!钡母怕剩
(3)以這16人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記ξ表示抽到“極幸!钡娜藬(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案