9.若全集U、集合A、集合B及其關(guān)系用韋恩圖表示如圖所示,則圖中陰影表示的集合為(  )
A.U(A∩B)B.U(A∪B)C.(A∪B)∩(∁U(A∩B))D.((∁UA)∩B)∩(∁UB)∩A)

分析 根據(jù)Venn圖表示集合關(guān)系進(jìn)行表示即可得到結(jié)論.

解答 解:由Venn圖可知陰影部分的元素是屬于集合A或B的元素,但不屬于A∩B的元素構(gòu)成,
即對應(yīng)的集合為(A∪B)∩(∁U(A∩B)),
故選:C.

點評 本題主要考查集合關(guān)系的判斷,利用Venn圖表示集合關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象向右平移$\frac{π}{4}$個單位,所得函數(shù)圖象的一條對稱軸方程為( 。
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過點$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)是否存在直線l:y=kx+m(k>0)與E相交于P,Q兩點,且滿足①OP與OQ(O為坐標(biāo)原點)的斜率之和為2;②直線l與圓x2+y2=1相切.若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于任意向量$\overrightarrow{a},\overrightarrow$,下列命題中正確的是( 。
A.若$\overrightarrow{a},\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等比數(shù)列{an}中,若a3=7,S3=21,則公比q的值為( 。
A.$\frac{1}{2}或3$B.$-\frac{1}{2}或3$C.$\frac{1}{2}或1$D.$-\frac{1}{2}或1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,一個6×5的矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA=PE=5.
(1)證明:BC⊥PB;
(2)求二面角B-PC-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$f(x)=|x+\frac{1}{x}-a|+|x-\frac{1}{x}-a|+2x-2a$ (x>0)的最小值為 $\frac{3}{2}$.則實數(shù)a=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.等邊三角形ABC的三個頂點在拋物線y2=4x上,其中點A重合于坐標(biāo)原點,求△ABC的邊長|BC|和它的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列求導(dǎo)運算正確的是( 。
A.${({\frac{1}{x}})^′}=\frac{1}{x^2}$B.${({log_2}x)^’}=\frac{1}{xln2}$
C.(3x)′=3xlog3eD.${({\frac{e^x}{x}})^′}=\frac{{x{e^x}+{e^x}}}{x^2}$

查看答案和解析>>

同步練習(xí)冊答案