9.解不等式:|x-4|-|x-2|>1.

分析 去絕對值符號,分類討論求出解,再求并集即可.

解答 解:當(dāng)x>4時,
原不等式等價(jià)為(x-4)-(x-2)>1,即-2>1,無解;
當(dāng)x<2時,原不等式等價(jià)為-(x-4)+(x-2)>1,
即2>1,成立;
當(dāng)2≤x≤4時,原不等式等價(jià)為-(x-4)-(x-2)>1,
即x<2.5.
∴2≤x<2.5.
故原不等式的解集為{x|x<2.5}.

點(diǎn)評 本題考查絕對值不等式的解法,考查分類討論的思想方法,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一同學(xué)在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前233個圈中的●的個數(shù)是( 。
A.18B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正三棱錐的側(cè)棱長為2,底面邊長為3,則該正三棱錐的外接球的表面積為( 。
A.$\frac{4}{3}π$B.C.$\frac{32}{3}π$D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知整數(shù)的數(shù)對列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第59個數(shù)對是( 。
A.(3,8)B.(4,7)C.(4,8)D.(5,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為2ρ2cos2θ-3ρ2sin2θ=30,圓O的圓心在原點(diǎn),經(jīng)過曲線C的右焦點(diǎn)F.
(1)求曲線C和圓O的標(biāo)準(zhǔn)方程;
(2)已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=4+tcosφ\\ y=-3+tsinφ\end{array}$(t為參數(shù))與圓O交于B,C兩點(diǎn),其中B在第四象限,C在第一象限,若|BC|=5,∠FOC=α,求sin($\frac{π}{3}$-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.直線mx-ny+2=0(m,n>0)被圓x2+y2+2x-2y+1=0截得弦長為2,則$\frac{4}{m}$+$\frac{1}{n}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{16}}}(x+1),x<0}\\{-{x^2}+x,x≥0}\end{array}}$,則關(guān)于x的方程f(x)=m(m∈R)恰有三個不同的實(shí)數(shù)根a,b,c,則a+b+c的取值范圍是( 。
A.($\frac{1}{4}$,$\frac{1}{2}$)B.($\frac{1}{4}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=lnx-$\frac{3}{x}$零點(diǎn)所在的大致區(qū)間為(  )
A.(2,3)B.(1,2)C.$(1\;,\;\frac{1}{e})$D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|kx-1|(k∈R).
(Ⅰ)若不等式f(x)≤2的解集為$\left\{{x|-\frac{1}{3}≤x≤1}\right\}$,求k的值;
(Ⅱ)若f(1)+f(2)<5,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案