14.一個平面將空間分成2部分;兩個平面將空間分成3或4部分.

分析 一個平面將空間被分成2個部分;兩個平面相交時,可以將空間分成4個部分;兩個平面不相交時將空間分成3個部分.

解答 解:一個平面將空間分成2個部分;
兩個平面相交時,可以將空間分成4個部分;
兩個平面不相交時(如房間的天花板所在的平面與地面所在的平面),則將空間分成3個部分.
故答案為:2,3或4.

點評 本題考查平面空間分成幾個部分的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=Asin($\frac{π}{6}$x+φ)(A>0,0<φ<$\frac{π}{2}})$)的部分圖象如圖所示,P,Q分別為該圖象的最高點和最低點,點P的坐標為(2,A),點R的坐標為(2,0).若∠PRQ=$\frac{2π}{3}$,則y=f(x)的最大值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1.
(1)求證:CD⊥PC
(2)設(shè)M為PD的中點,證明:CM∥平面PAB
(3)若PA=1,求側(cè)面PAB與側(cè)面PCD所成二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an-2+3log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{{{{(x+2)}^2}+sinx}}{{{x^2}+4}}$,其導函數(shù)記為f'(x),則f(2015)+f'(2015)+f(-2015)-f'(-2015)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,點O是原點,若A點到準線的距離為3,則△AOB的面積為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.己知復數(shù)z=4-2i,其中i是虛數(shù)單位,當復數(shù)(z+ai)2在復平面上對應(yīng)的點在第一象限時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)是定義在[-2,2]上的奇函數(shù),且f(2)=3.若對任意的m,n∈[-2,2],m+n≠0,都有$\frac{f(m)+f(n)}{m+n}$>0.
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)若f(2a-1)<f(a2-2a+2),求實數(shù)a的取值范圍;
(3)若不等式f(x)≥5-2a對任意x∈[-2,2]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象如圖所示.則函數(shù)y=f(x)的解析式為$f(x)=2sin(x+\frac{π}{6})$.

查看答案和解析>>

同步練習冊答案