求圓心在直線上,與軸相切,且被直線截得的弦長為的圓的方程.
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓C0:(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a.點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最;
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線l1、l2分別與拋物線x2=4y相切于點A、B,且A、B兩點的橫坐標分別為a、b(a、b∈R).
(1)求直線l1、l2的方程;
(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點R,經(jīng)過P、Q、R三點作圓C.
①當a=4,b=-2時,求圓C的方程;
②當a,b變化時,圓C是否過定點?若是,求出所有定點坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com