紅、黃、藍(lán)三色燈泡分別有3、2、2支,把它們掛成一排,要求紅色燈泡不能全部相鄰,則看到的不同效果有
 
個.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:利用間接法,先全排列,再排除3個紅色燈泡全相鄰的,最后再除以順序數(shù),問題得以解決.
解答: 解:先無限制全排列,再剔除不符合條件的排列,最后再進(jìn)行組合.
A
7
7
-
A
5
5
A
3
3
A
3
3
A
2
2
A
2
2
=180

故答案為:180
點評:本題主要考查了有限制條件的排列問題,常用的方法是間接法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三角棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,點M,N分別為A′B和B′C′的中點.
(1)證明:MN∥平面A′ACC′;
(2)求平面A′MN與平面MNC的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx+2
3
cosx,(x∈R)
①求函數(shù)f(x)的最大值和最小值;
②求f(x)的單調(diào)遞區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn},滿足a1=2,2an=1+2anan+1,bn=an-1(bn≠0).
(Ⅰ)求證數(shù)列{
1
bn
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)令Cn=bnbn+1,Sn為數(shù)列{Cn}的前n項和,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
6
)-1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,且f(C)=1,若c=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一數(shù)學(xué)興趣小組利用幾何概型的相關(guān)知識做實驗來計算圓周率,他們向一個邊長為1米的正方形區(qū)域均勻撒豆,測得正方形區(qū)域有豆5001顆,正方形內(nèi)切圓區(qū)域有豆3938顆,則他們所得的圓周率為
 
(小數(shù)點后保留二位數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知曲線C1、C2、C3依次為y=2log2x、y=log2x、y=klog2x(k為常數(shù),0<k<1).曲線C1上的點A在第一象限,過A分別作x軸、y軸的平行線交曲線C2分別于點B、D,過點B作y軸的平行線交曲線C3于點C.若四邊形ABCD為矩形,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(ax-
3
6
3(a>0)的展開式的第二項的系數(shù)為-
3
2
,則
a
-2
x2dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,3]時,f(x)=
x-1,1≤x≤2
3-x,2<x<3
②f(3x)=3f(x),設(shè)關(guān)于x的函數(shù)F(x)=f(x)-1的零點從小到大依次記為x1,x2,x3,…,則x1+x2+x3=
 

查看答案和解析>>

同步練習(xí)冊答案