6.已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A.y=-2x+3B.y=xC.y=3x-2D.y=2x-1

分析 先根據(jù)f(x)=2f(2-x)-x2+8x-8求出函數(shù)f(x)的解析式,然后對函數(shù)f(x)進行求導(dǎo),進而可得到y(tǒng)=f(x)在點(1,f(1))處的切線方程的斜率,最后根據(jù)點斜式可求導(dǎo)切線方程.

解答 解:∵f(x)=2f(2-x)-x2+8x-8,
∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8.
∴f(2-x)=2f(x)-x2+4x-4+16-8x-8.
將f(2-x)代入f(x)=2f(2-x)-x2+8x-8
得f(x)=4f(x)-2x2-8x+8-x2+8x-8.
∴f(x)=x2,f′(x)=2x,
∴y=f(x)在(1,f(1))處的切線斜率為y′=2.
∴函數(shù)y=f(x)在(1,f(1))處的切線方程為y-1=2(x-1),
即y=2x-1.
故選:D.

點評 本題主要考查求函數(shù)解析式的方法和函數(shù)的求導(dǎo)法則以及導(dǎo)數(shù)的幾何意義,函數(shù)在某點處的導(dǎo)數(shù)值等于該點的切線方程的斜率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)復(fù)數(shù)z滿足z(2+i)=5i,則|z-1|=( 。
A.1B.2C.$\sqrt{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.云南省2016年高中數(shù)學(xué)學(xué)業(yè)水平考試的原始成績采用百分制,發(fā)布成績使用等級制,各登記劃分標(biāo)準(zhǔn)為:85分及以上,記為A等,分數(shù)在[70,85)內(nèi),記為B等,分數(shù)在[60,70)內(nèi),記為C等,60分以下,記為D等,同時認定等級分別為A,B,C都為合格,等級為D為不合格.
已知甲、乙兩所學(xué)校學(xué)生的原始成績均分布在[50,100]內(nèi),為了比較兩校學(xué)生的成績,分別抽取50名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]分別作出甲校如圖1所示樣本頻率分布直方圖,乙校如圖2所示樣本中等級為C、D的所有數(shù)據(jù)莖葉圖.

(1)求圖中x的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;
(2)在選取的樣本中,從甲、乙兩校C等級的學(xué)生中隨機抽取3名學(xué)生進行調(diào)研,用X表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.${(2x+\frac{1}{{\sqrt{x}}})^5}$的展開式中,$\sqrt{x}$的系數(shù)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{b^2}=1(\frac{{2\sqrt{3}}}{3}<b<2)$,動圓P:${(x-{x_0})^2}+{(y-{y_0})^2}=\frac{4}{3}$(圓心P為橢圓C上異于左右頂點的任意一點),過原點O作兩條射線與圓P相切,分別交橢圓于M,N兩點,且切線長的最小值為$\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:△MON的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b為實數(shù),則“a=0”是“f(x)=x2+a|x|+b為偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等差數(shù)列{an},等比數(shù)列{bn}的前n項和為Sn,Tn(n∈N*),若Sn=$\frac{3}{2}$n2+$\frac{1}{2}$n,b1=a1,b2=a3,則an=3n-1,Tn=$\frac{2}{3}({4}^{n}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-x3+ax2-x-1在R上是單調(diào)函數(shù),則實數(shù)a的取值范圍是$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,設(shè)點F1,F(xiàn)2與橢圓短軸的一個端點構(gòu)成斜邊長為4的直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B,P為橢圓C上三點,滿足$\overrightarrow{OP}$=$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{4}{5}$$\overrightarrow{OB}$,記線段AB中點Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點,求|MN|.

查看答案和解析>>

同步練習(xí)冊答案