19.若函數(shù)f(x)=eax-$\frac{lnx}{a}$(a>0)存在零點(diǎn),則a的取值范圍是( 。
A.(0,$\frac{1}{e}$]B.(0,$\frac{1}{{e}^{2}}$]C.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$]D.[$\frac{1}{e}$,+∞)

分析 先考慮函數(shù)f(x)=ax與g(x)=logax(a>1)圖象僅有一個(gè)交點(diǎn),且在公共點(diǎn)處有公共的切線,a的值,再利用換元法,即可得出結(jié)論.

解答 解:先考慮函數(shù)f(x)=ax與g(x)=logax(a>1)圖象僅有一個(gè)交點(diǎn),且在公共點(diǎn)處有公共的切線,a的值.
兩函數(shù)互為反函數(shù),則該切線即為y=x,設(shè)切點(diǎn)A,
可求出A(e,e),此時(shí)a=${e}^{\frac{1}{a}}$.
若a>${e}^{\frac{1}{a}}$時(shí),則f(x)=ax與g(x)=logax(a>1)無公共點(diǎn);
若1<a<${e}^{\frac{1}{a}}$時(shí),則f(x)=ax與g(x)=logax(a>1)有兩個(gè)公共點(diǎn).
對(duì)f(x)=eax-$\frac{lnx}{a}$(a>0),換元令t=ea,即得tx=logtx,
由上知ea=t≤${e}^{\frac{1}{a}}$,得a≤$\frac{1}{e}$.
故選A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生轉(zhuǎn)化問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|-3<x<3},B={x|y=lg(x+1)},則集合A∩B為( 。
A.[0,3)B.[-1,3)C.(-1,3)D.(-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在半徑為2的球面中,有一個(gè)底面是等邊三角形,側(cè)棱與底面垂直的三棱柱的頂點(diǎn)都在這個(gè)球面上,則該三棱柱的側(cè)面積的最大值為12$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示(均由邊長為$\sqrt{2}$的正方形及其對(duì)角線組成),則該幾何體的表面積為( 。
A.8$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,過B、C分別作∠BAC的平分線的垂線,E、F為垂足,AD⊥BC于D、M為BC中點(diǎn),求證:M、E、D、F四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}={1^{\;}}$(a>b>0)的長軸長為2$\sqrt{3}$,右焦點(diǎn)為F(c,0),且a2,b2,c2成等差數(shù)列.
(1)求橢圓C的方程;
(2)過點(diǎn)F分別作直線l1,l2,直線l1與橢圓C交于點(diǎn)M,N,直線l2與橢圓C交于點(diǎn)P,Q,且l1⊥l2,求四邊形MPNQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=x3-3x在(a,6-a2)上有最大值,則實(shí)數(shù)a的取值范圍是(  )
A.(-$\sqrt{7}$,-1)B.(-$\sqrt{7}$,-1]C.(-$\sqrt{7}$,-2)D.(-$\sqrt{7}$,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合P={x|x=k+$\frac{1}{2}$,k∈z},Q={x|x=$\frac{k}{2}$,k∈z},記原命題:“x∈P,則x∈Q”.那么,在原命題及其逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知橢圓C過點(diǎn)(0,2),其焦點(diǎn)為F1(-$\sqrt{5}$,0),F(xiàn)2($\sqrt{5}$,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P在橢圓C上,且PF1=4,求△PF1F2的面積.

查看答案和解析>>

同步練習(xí)冊答案