3.拋物線C:y2=4x的交點為F,準(zhǔn)線為l,p為拋物線C上一點,且P在第一象限,PM⊥l交C于點M,線段MF為拋物線C交于點N,若PF的斜率為$\frac{3}{4}$,則$\frac{|MN|}{|NF|}$=$\sqrt{5}$.

分析 過N作l的垂線,垂足為Q,則|NF|=|NQ|,|PF|=|PM|,求出P的坐標(biāo),可得cos∠MNQ=$\frac{\sqrt{5}}{5}$,即可得到$\frac{|MN|}{|NF|}$.

解答 解:拋物線C:y2=4x的焦點為F(1,0),
過N作l的垂線,垂足為Q,則|NF|=|NQ|,
∵PF的斜率為$\frac{3}{4}$,∴可得P(4,4).
∴M(-1,4),∴cos∠MFO=$\frac{\sqrt{5}}{5}$
∴cos∠MNQ=$\frac{\sqrt{5}}{5}$
∴$\frac{|MN|}{|NF|}$=$\sqrt{5}$
故答案為:$\sqrt{5}$.

點評 本題考查了拋物線的性質(zhì),三角函數(shù)的恒等變換,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,點P在射線OC上,則$\overrightarrow{AP}•\overrightarrow{OP}$的最小值為( 。
A.-1B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-x-lna,a為常數(shù).
(1)若函數(shù)f(x)有兩個零點x1,x2,且x1<x2,求a的取值范圍;
(2)在(1)的條件下,證明:$\frac{x_1}{x_2}$的值隨a的值增大而增大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系中,若點(-2,t)在直線x-2y+4=0的上方,則取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,函數(shù)f(x)的圖象在P點處的切線方程是y=-2x+17,若點P的橫坐標(biāo)是5,則f(5)+f′(5)=( 。
A.5B.-5C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)${f_1}(x)=\frac{1}{2}{x^2},{f_2}(x)=alnx$(其中a>0).
(1)求函數(shù)f(x)=f1(x1)•f2(x2)的極值;
(2)若函數(shù)g(x)=f1(x1)-f2(x2)+(a-1)x在區(qū)間$(\frac{1}{e},e)$內(nèi)有兩個零點,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.哈六中數(shù)學(xué)組推出微信訂閱號(公眾號hl15645101785)后,受到家長和學(xué)生們的關(guān)注,為了更好的為學(xué)生和家長提供幫助,我們在某時間段在線調(diào)查了60位更關(guān)注欄目1或欄目2(2選一)的群體身份樣本得到如下列聯(lián)表,已知在樣本中關(guān)注欄目1與關(guān)注欄目2的人數(shù)比為2:1,在關(guān)注欄目1中的家長與學(xué)生人數(shù)比為5:3,在關(guān)注欄目2中的家長與學(xué)生人數(shù)比為1:3
欄目1欄目2合計
家長
學(xué)生
合計
(1)完成列聯(lián)表,并根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“更關(guān)注欄目1或欄目2與群體身份有關(guān)系”;
(2)如果把樣本頻率視為概率,隨機回訪兩位關(guān)注者,更關(guān)注欄目1的人數(shù)記為隨機變量X,求X的分布列和期望;
(3)由調(diào)查樣本對兩個欄目的關(guān)注度,請你為數(shù)學(xué)組教師提供建議應(yīng)該更側(cè)重充實哪個欄目的內(nèi)容,并簡要說明理由.
P(K2≥x00.100.050.0250.010.0050.001
x02.7063.8415.0246.6357.87910.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且3f(x)=f′(x)-3,則4f(x)>f′(x)( 。
A.($\frac{ln4}{3}$,+∞)B.($\frac{ln2}{3}$,+∞)C.($\frac{\sqrt{3}}{2}$,+∞)D.($\frac{\sqrt{e}}{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案