14.已知$\overrightarrow{a}$、$\overrightarrow$均為單位向量,(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=-$\frac{3\sqrt{3}}{2}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 推導(dǎo)出(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=-3cos<$\overrightarrow{a},\overrightarrow$>=-$\frac{3\sqrt{3}}{2}$,由此能求出向量$\overrightarrow{a}$,$\overrightarrow$的夾角.

解答 解:∵$\overrightarrow{a}$、$\overrightarrow$均為單位向量,(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=-$\frac{3\sqrt{3}}{2}$,
∴(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=$2{\overrightarrow{a}}^{2}-3\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}$
=-3×$1×1×cos<\overrightarrow{a},\overrightarrow>$=-3cos<$\overrightarrow{a},\overrightarrow$>=-$\frac{3\sqrt{3}}{2}$,
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\sqrt{3}}{2}$.
∴<$\overrightarrow{a},\overrightarrow$>=$\frac{π}{6}$.
∴向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{6}$.
故選:D.

點評 本題考查向量的夾角的求法,是中檔題,解題時要認(rèn)真審題,注意向量數(shù)量積公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)y=f(x)在區(qū)間[0,1]上是非負(fù)連續(xù)函數(shù).
試證:存在x0∈(0,1),使得在區(qū)間[0,x0]上以f(x0)為高的矩形面積等于在區(qū)間[x0,1]上以y=f(x)為曲邊的曲邊梯形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.周期函數(shù)f(x)的定義域為R,周期為2,且當(dāng)-1<x≤1時,f(x)=1-x2.若直線y=-x+a與曲線y=f(x)恰有3個交點,則實數(shù)a的取值范圍是( 。
A.2k+$\frac{3}{4}$<a<2k+$\frac{5}{4}$,k∈ZB.2k+1<a<2k+3,k∈Z
C.2k+1<a<2k+$\frac{5}{4}$,k∈ZD.2k-$\frac{3}{4}$<a<2k+1,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某超市有獎促銷,抽獎規(guī)則是:每消費滿50元,即可抽獎一次.抽獎方法是:在不透明的盒內(nèi)裝有標(biāo)著1,2,3,4,5號碼的5個小球,從中任取1球,若號碼大于3就獎勵10元,否則無獎,之后將球放回盒中,即完成一次抽獎,則某人抽獎2次恰中20元的概率為$\frac{4}{25}$;若某人消費200元,則他中獎金額的期望是16元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知盒子中有4個紅球,n個白球,若從中一次取出4個球,其中白球的個數(shù)為X,且E(X)=$\frac{12}{7}$.則n的值( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是一幾何體的直觀圖、主視圖和俯視圖,則該幾何體的側(cè)視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosx,cosx),$\overrightarrow$=(0,sinx),$\overrightarrow{c}$=(sinx,cosx),$\overrightarrowbfy9lxm$=(sinx,sinx).
(1)當(dāng)x=$\frac{π}{4}$時,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)求$\overrightarrow{c}•\overrightarrowkrdaae4$取得最大值時x的值;
(3)設(shè)函數(shù)f(x)=($\overrightarrow{a}-\overrightarrow$)$•(\overrightarrow{c}+\overrightarrowxzfc9dh)$,將函數(shù)f(x)的圖象向右平移s個單位長度,向上平移t個長度單位(s,t>0)后得到函數(shù)g(x)的圖象,且g(x)=2sin2x+1;令$\overrightarrow{m}$=(s,t),求|$\overrightarrow{m}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校為了增強(qiáng)學(xué)生對消防安全知識的了解,舉行了一次消防安全知識競賽.其中一道題是連線題,要求將3種不同的消防工具與它們的用途一對一連線,規(guī)定:每連對一條得2分,連錯一條扣1分,參賽者必須把消防工具與用途一對一全部連起來.
(Ⅰ)設(shè)三種消防工具分別為A,B,C,其用途分別為a,b,c,若把 連線方式表示為$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{b^{\;}}{c^{\;}}a\end{array})$,規(guī)定第一行A,B,C的順序固定不變,請列出所有連線的情況;
(Ⅱ)求某參賽者得分為0分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2.
(Ⅰ)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求|$\overrightarrow{a}+2\overrightarrow$|;
(Ⅱ)若(2$\overrightarrow{a}-b$)$•(3\overrightarrow{a}+\overrightarrow)$=3,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

同步練習(xí)冊答案