【題目】已知橢圓的標(biāo)準(zhǔn)方程為,點(diǎn)

Ⅰ)經(jīng)過(guò)點(diǎn)且傾斜角為的直線與橢圓交于兩點(diǎn),求

Ⅱ)問(wèn)是否存在直線與橢圓交于兩點(diǎn)、,若存在,求出直線斜率的取值范圍;若不存在說(shuō)明理由.

【答案】(1);(2)直線斜率的取值范圍是.

【解析】分析:(Ⅰ)求直線與圓錐曲線的相交弦長(zhǎng),可求兩個(gè)交點(diǎn)的坐標(biāo)。根據(jù)條件可求得直線的方程為,將其與橢圓方程聯(lián)立得求得兩個(gè)交點(diǎn)坐標(biāo)。進(jìn)而用兩點(diǎn)間距離公式可得。(Ⅱ)要求是否存在直線,可設(shè)出直線的方程,兩個(gè)交點(diǎn),。中點(diǎn),由,可得,進(jìn)而得。所以需求點(diǎn)的坐標(biāo)。將直線與橢圓聯(lián)立可得:,消去,則由,可得

由一元二次方程根與系數(shù)的關(guān)系及中點(diǎn)坐標(biāo)公式可得,根據(jù)點(diǎn)在直線上,可得。進(jìn)而可得;(jiǎn)可得,代入可得,化簡(jiǎn)可解得。

詳解:(Ⅰ)經(jīng)過(guò)點(diǎn)且傾斜角為

所以直線的方程為,

聯(lián)立,解得,

(Ⅱ)設(shè)直線,,

將直線與橢圓聯(lián)立可得:

,消去,

① ,

,

設(shè)中點(diǎn),

,,

,

,

,

代入①可得:

,解得

故直線斜率的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項(xiàng)和為T(mén)n , 若Tn≥tn2對(duì)n∈N*恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F為橢圓 的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線 與橢圓E有且僅有一個(gè)交點(diǎn)M. (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線 與y軸交于P,過(guò)點(diǎn)P的直線與橢圓E交于兩不同點(diǎn)A,B,若λ|PM|2=|PA||PB|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P. (Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線過(guò)點(diǎn)且與直線平行,直線過(guò)點(diǎn)且與直線垂直.

Ⅰ)求直線,的方程.

若圓,同時(shí)相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=axex , 其中常數(shù)a≠0,e為自然對(duì)數(shù)的底數(shù). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x﹣ )是曲線y=f(x)的切線,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)M(x1 , f(x1))和點(diǎn)N(x2 , g(x2))分別是函數(shù)f(x)=ex x2和g(x)=x﹣1圖象上的點(diǎn),且x1≥0,x2>0,若直線MN∥x軸,則M,N兩點(diǎn)間的距離的最小值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex(x2+ax+a). (I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案