過拋物線y2=4x的焦點的直線交拋物線于A、B兩點,O為坐標原點,則
OA
OB
=
 
考點:平面向量數(shù)量積的運算
專題:向量與圓錐曲線
分析:由拋物線y2=4x與過其焦點(1,0)的直線方程聯(lián)立,消去y整理成關(guān)于x的一元二次方程,設(shè)出A(x1,y1)、B(x2,y2)兩點坐標,由向量的數(shù)量積的坐標運算得
OA
OB
=x1•x2+y1•y2,由韋達定理可以求得答案.
解答: 解:由題意知,拋物線y2=4x的焦點坐標為(1,0),∴直線AB的方程為y=k(x-1),
y2=4x
y=k(x-1)
得k2x2-(2k2+4)x+k2=0,設(shè)A(x1,y1),B(x2,y2),
則x1+x2=
2k2+4
k2
,x1•x2=1,
∴y1•y2=k(x1-1)•k(x2-1)=k2[x1•x2-(x1+x2)+1]
OA
OB
=x1•x2+y1•y2=1+k2(2-
2k2+4
k2
)=1-4=-3;
故答案為:-3.
點評:本題考查直線與圓錐曲線的關(guān)系,解決問題的關(guān)鍵是聯(lián)立拋物線方程與過其焦點的直線方程,利用韋達定理予以解決.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(Ⅰ)若x∈R,求f(x)=|x-1|+x的最小值S;
(Ⅱ)在(Ⅰ)的條件下,若a,b∈R+,a2+b2≤S,試求2a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們知道:圓的任意一弦(非直徑)的中點和圓心連線與該弦垂直;那么,若橢圓b2x2+a2y2=a2b2的一弦(非過原點的弦)的中點與原點連線及弦所在直線的斜率均存在,你能得到什么結(jié)論?請予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|.
(1)解不等式f(x)+f(x+4)≤8;
(2)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(x-
2
3x
8的二項展開式中,常數(shù)項為( 。
A、1024B、1324
C、1792D、-1080

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-4a (x<1)
x2 (x≥1)
是R上的增函數(shù),那么a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-1)ex-x2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,k](k>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,若a=2,b=3,∠C=60°,則sinA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α+
π
3
)+sinα=-
4
3
5
,-
π
2
<α<0,則cos(α+
3
)等于(  )
A、-
4
5
B、-
3
5
C、
4
5
D、
3
5

查看答案和解析>>

同步練習冊答案