【題目】2018年“雙十一”期間,某商場舉辦了一次有獎促銷活動,顧客消費(fèi)每滿1000元可參加一次抽獎(例如:顧客甲消費(fèi)930元,不得參與抽獎;顧客乙消費(fèi)3400元,可以抽獎三次)。如圖1,在圓盤上繪制了標(biāo)有A,B,C,D的八個扇形區(qū)域,每次抽獎時由顧客按動按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時指針會隨機(jī)停在圓盤上的某一個位置,顧客獲獎的獎次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線粗細(xì)忽略不計(jì))。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對應(yīng)的獎金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.

(I)某顧客只抽獎一次,設(shè)該顧客抽獎所獲得的獎金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;

(II)如圖2,該商場統(tǒng)計(jì)了活動期間一天的顧客消費(fèi)情況.現(xiàn)按照消費(fèi)金額分層抽樣選出15位顧客代表,其中獲得獎金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎金總數(shù)和仍不足100元的概率.

【答案】1)詳見解析(2

【解析】

(1)分別計(jì)算出X=50,100,150,200對應(yīng)的概率,計(jì)算期望,即可。(2)結(jié)合古典概型,計(jì)算出結(jié)合,即可。

解:(1)設(shè)標(biāo)有A,B,C,D的扇形區(qū)域的圓心角分別為

由題意知:

所以顧客抽獎一次,獲得獎金X可能取值為50,100,150,200,所對應(yīng)的概率分別為

所以X的分布列為

X

50

100

150

200

P

期望

(2)由已知得:

1消費(fèi)金額位于內(nèi)的顧客,獲獎金額一定高于100元,

2消費(fèi)金額位于內(nèi)的顧客獲獎金額為0元,

3消費(fèi)金額位于內(nèi)的顧客獲獎金額可能為50,100,150,200元

分層抽樣得 內(nèi)抽到的顧客代表人數(shù)為人,

則獲得獎金總數(shù)不足100元的剩余4位顧客代表必然獲得獎金數(shù)為50元.

設(shè)獲獎金額為0元的三位顧客代表為,獲獎金額為50元的四位顧客代表為

事件 “從這7位顧客代表中隨機(jī)選取兩位的獎金總數(shù)仍不足100元”

“從這7位顧客代表中隨機(jī)選取兩位的獎金總數(shù)等于100元”

從這7位顧客代表中隨機(jī)選取兩位的基本事件空間為:

共有21個基本事件;

共有6個基本事件。

從這7位顧客代表中隨機(jī)選取兩位,他們的獎金總數(shù)仍不足100元的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮,某公司隨機(jī)抽取1000人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計(jì)

1)求出表格中的值,并根據(jù)表中的數(shù)據(jù),判斷能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品對生活無益的人員中隨機(jī)抽取6人,再從6人中隨機(jī)抽取2人贈送超市購物券作為答謝,求恰有1人是女性的概率.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C上,過Mx軸的垂線,垂足為N,點(diǎn)P滿足.

1)求點(diǎn)P的軌跡方程;

(2)設(shè)點(diǎn)Q在直線上,且。證明:過點(diǎn)P且垂直于OQ的直線lC的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn),直線分別與拋物線交于點(diǎn),若直線的斜率之和為零,則直線的斜率為_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)hx)=x2exfx)=hx)﹣aexaR).

(Ⅰ)求函數(shù)hx)的單調(diào)區(qū)間;

(Ⅱ)若x1,x2∈(1,2),且x1x2,使得fx1)=fx2)成立,求a的取值范圍;

(Ⅲ)若函數(shù)fx)有兩個不同的極值點(diǎn)x1,x2,求證:fx1fx2)<4e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像相鄰兩條對稱軸間的距離為,且,則以下命題中為假命題的是(

A.函數(shù)上是增函數(shù).

B.函數(shù)圖像關(guān)于點(diǎn)對稱

C.函數(shù)的圖象可由的圖象向左平移個單位長度得到

D.函數(shù)的圖象關(guān)于直線對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I)已知函數(shù)在點(diǎn)處的切線與直線垂直,求的值;

(Ⅱ)若函數(shù)上無零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線與曲線公共點(diǎn)的極坐標(biāo);

(2)設(shè)過點(diǎn)的直線交曲線兩點(diǎn),且的中點(diǎn)為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)變軌進(jìn)入以月球球心為一個焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點(diǎn)第二次變軌進(jìn)入仍然以為一個焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在點(diǎn)第三次變軌進(jìn)入以為圓心的圓形軌道Ⅲ繞月飛行,若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:

;②;③;④.

其中正確式子的序號是( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

同步練習(xí)冊答案