f(x)=
x2        ,x>0
π
0       ,x<0
,x=0
,則f{f[f(-3)]}等于(  )
分析:應(yīng)從內(nèi)到外逐層求解,計(jì)算時(shí)要充分考慮自變量的范圍.根據(jù)不同的范圍代不同的解析式.
解答:解:由題可知:∵-3<0,∴f(-3)=0,
∴f[f(-3)]=f(0)=π>0,
∴f{f[f(-3)]}=f(π)=π2
故選C
點(diǎn)評(píng):本題考查的是分段函數(shù)求值問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了復(fù)合函數(shù)的思想、問(wèn)題轉(zhuǎn)化的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-2ax+b|.x∈R,給出四個(gè)命題:
①f(x)必是偶函數(shù);
②若f(0)=f(2),則f(x)的圖象關(guān)于直線x=1對(duì)稱;
③若a2-b≤0,則f(x)在[a,+∞)上是增函數(shù);
④f(x)有最小值|a2-b|;⑤對(duì)任意x都有f(a-x)=f(a+x);
其中正確命題的序號(hào)是
③⑤
③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),試證明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②對(duì)任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數(shù).
(1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
第一組:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
(3)已知f(x)=x,g(x)=
1
x
,x∈[1,10]
的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)f(x)的定義域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/35874.png' />時(shí),求f(x)的值域;
(2)試問(wèn)對(duì)定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個(gè)定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由;
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,若數(shù)學(xué)公式,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),試證明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②對(duì)任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案