在三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).
(1)求恰有一件不合格的概率;
(2)求至少有兩件不合格的概率. (精確到0.001)
(1)0.176(2)0.012
設(shè)三種產(chǎn)品各抽取一件,抽到合格產(chǎn)品的事件分別為A、B和C.
(1)P(A)=0.90,P(B)=P(C)=0.95.
P="0.10" ,  P=P=0.05.
因?yàn)槭录嗀,B,C相互獨(dú)立,恰有一件不合格的概率為
P(A·B·)+P(A··C)+P(·B·C)
=P(A)·P(B)·P()+P(A)·P()·P(C)+P()·P(B)·P(C)
=2×0.90×0.95×0.05+0.10×0.95×0.95=0.176
答:恰有一件不合格的概率為0.176. (6分)
(2)解:至少有兩件不合格的概率為
P(A··)+P(·B·)+P(··C)+ P(··
=0.90×0.052+2×0.10×0.05×0.95+0.10×0.052
=0.012.
答:至少有兩件不合格的概率為0.012. (13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)
根據(jù)以往統(tǒng)計(jì)資料,某地車主購買甲種保險(xiǎn)的概率為0.5,購買乙種保險(xiǎn)但不購買甲種保險(xiǎn)的概率為0.3.設(shè)各車主購買保險(xiǎn)相互獨(dú)立.
(I)求該地1位車主至少購買甲、乙兩種保險(xiǎn)中的1種的概率;
(II)求該地3位車主中恰有1位車主甲、乙兩種保險(xiǎn)都不購買的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





(Ⅰ)求乙、丙兩人各自回答對(duì)這道題的概率.
(Ⅱ)求甲、乙、丙三人中恰有兩人回答對(duì)該題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)乙取勝的概率;
(Ⅱ)比賽打滿七局的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱該次試驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次試驗(yàn)是失敗的.
(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某處有供水龍頭5個(gè),調(diào)查表明每個(gè)水龍頭被打開的可能性為,隨機(jī)變量ξ表示同時(shí)被打開的水龍頭的個(gè)數(shù),則P(ξ=3)為
A.0.0081B.0.0729C.0.0525D.0.0092

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機(jī)變量,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為大力提倡“厲行節(jié)約,反對(duì)浪費(fèi)”,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動(dòng),得到如下的列聯(lián)表:
 
做不到“光盤”
能做到“光盤”
 男
45
10

30
15
附:
P(K2k)
0.10
0.05
0.025
k
2.706
3.841
5.024

參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過l%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一道競(jìng)賽題,甲同學(xué)解出它的概率為,乙同學(xué)解出它的概率為,丙同學(xué)解出它的概率為,則獨(dú)立解答此題時(shí),三人中只有一人解出的概率為
A.B.    C.    D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案