(本小題滿分12分)已知焦點(diǎn)在軸上的橢圓C1=1經(jīng)過(guò)A(1,0)點(diǎn),且離心率為
(I)求橢圓C1的方程;
(Ⅱ)過(guò)拋物線C2(h∈R)上P點(diǎn)的切線與橢圓C1交于兩點(diǎn)M、N,記線段MN與PA的中點(diǎn)分別為G、H,當(dāng)GH與軸平行時(shí),求h的最小值.
解:(Ⅰ)由題意可得,……………2分
解得
所以橢圓的方程為 .………………4分
(Ⅱ)設(shè),由 ,
拋物線在點(diǎn)處的切線的斜率為 ,
所以的方程為 ,……………5分
代入橢圓方程得 ,
化簡(jiǎn)得
與橢圓有兩個(gè)交點(diǎn),故
    ①
設(shè),中點(diǎn)橫坐標(biāo)為,則
,  …………………8分
設(shè)線段的中點(diǎn)橫坐標(biāo)為,
由已知得, ②………………10分
顯然,  ③
當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取得等號(hào),此時(shí)不符合①式,故舍去;
當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取得等號(hào),此時(shí),滿足①式。
綜上,的最小值為1.………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,O為原點(diǎn),從橢圓的左焦點(diǎn)F引圓的切線FT交橢圓于點(diǎn)P,切點(diǎn)T位于F、P之間,M為線段FP的中點(diǎn),M位于F、T之間,則的值為_(kāi)____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線過(guò)橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn)坐標(biāo)為【   】
A.(-3,0)B.,
C.,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知焦點(diǎn)在x軸的橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)  在直線為長(zhǎng)半軸,為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以OM為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)FOM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓及以下3個(gè)函數(shù):①;②;
,其中函數(shù)圖像能等分該橢圓面積的函數(shù)個(gè)數(shù)有……………(     ).
A.0個(gè)B.1個(gè) C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分12分)
設(shè)橢圓)經(jīng)過(guò)點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;(注意橢圓的焦點(diǎn)在軸上哦!)
(Ⅱ) 動(dòng)直線交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓C:的左、右焦點(diǎn)為,其上頂點(diǎn)為.已知是邊長(zhǎng)為的正三角形.
(1)求橢圓C的方程;  
(2) 過(guò)點(diǎn)任作一直線交橢圓C于
點(diǎn),記若在線段上取一點(diǎn)使得,試判斷當(dāng)直線運(yùn)動(dòng)時(shí),點(diǎn)是否在某一定直線上運(yùn)動(dòng)?若在,請(qǐng)求出該定直線的方程,若不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓中心為坐標(biāo)原點(diǎn),焦點(diǎn)位于x軸上,分別為右頂點(diǎn)和上頂點(diǎn),是左焦點(diǎn);當(dāng)時(shí),此類橢圓稱為“黃金橢圓”,其離心率為.類比“黃金橢圓”可推算出“黃金雙曲線”的離心率為              .

查看答案和解析>>

同步練習(xí)冊(cè)答案