【題目】已知雙曲線的焦點是橢圓: ()的頂點,且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設動點, 在橢圓上,且,記直線在軸上的截距為,求的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(I)雙曲線的焦點為,離心率為,對于橢圓來說, ,由此求得和橢圓的方程.(II)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,利用判別式求得的一個不等關系,利用韋達定理和弦長公式,求得一個等量關系,利用表示,進而用基本不等式求得的最大值.
試題解析:
(Ⅰ)雙曲線的焦點坐標為,離心率為.
因為雙曲線的焦點是橢圓: ()的頂點,且橢圓與雙曲線的離心率互為倒數(shù),所以,且,解得.
故橢圓的方程為.
(Ⅱ)因為,所以直線的斜率存在.
因為直線在軸上的截距為,所以可設直線的方程為.
代入橢圓方程得 .
因為 ,
所以.
設, ,
根據根與系數(shù)的關系得, .
則 .
因為,即 .
整理得.
令,則.
所以 .
等號成立的條件是,此時, 滿足,符合題意.
故的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | ||||
凈利潤占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營銷虧損
B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C. 該公司2018年度凈利潤主要由空調類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據后,該公司2018年度空調類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形, ,M是線段DE上的點,滿足DM=2ME.
(1)證明:BE//平面MAC;
(2)求直線BF與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當在處取得極值時,若關于x的方程 在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
(2)若對任意的,總存在,使不等式 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐,,,,點在底面上的射影是的中點,.
(1)求證:直線平面;
(2)若,、分別為、的中點,求直線與平面所成角的正弦值;
(3)當四棱錐的體積最大時,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點為極點,軸正半軸為極軸建立極坐標系.
(Ⅰ)求直線及圓的極坐標方程;
(Ⅱ)若直線與圓交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著互聯(lián)網的興起,越來越多的人選擇網上購物.某購物平臺為了吸引顧客,提升銷售額,每年雙十一都會進行某種商品的促銷活動.該商品促銷活動規(guī)則如下:①“價由客定”,即所有參與該商品促銷活動的人進行網絡報價,每個人并不知曉其他人的報價,也不知道參與該商品促銷活動的總人數(shù);②報價時間截止后,系統(tǒng)根據當年雙十一該商品數(shù)量配額,按照參與該商品促銷活動人員的報價從高到低分配名額;③每人限購一件,且參與人員分配到名額時必須購買.某位顧客擬參加2019雙十一該商品促銷活動,他為了預測該商品最低成交價,根據該購物平臺的公告,統(tǒng)計了最近5年雙十一參與該商品促銷活動的人數(shù)(見下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份編號t | 1 | 2 | 3 | 4 | 5 |
參與人數(shù)(百萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據的散點圖發(fā)現(xiàn),可用線性回歸模型模擬擬合參與人數(shù)(百萬人)與年份編號之間的相關關系.請用最小二乘法求關于的線性回歸方程:,并預測2019年雙十一參與該商品促銷活動的人數(shù);
(2)該購物平臺調研部門對2000位擬參與2019年雙十一該商品促銷活動人員的報價價格進行了一個抽樣調查,得到如下的一份頻數(shù)表:
報價區(qū)間(千元) |
| |||||
頻數(shù) | 200 | 600 | 600 | 300 | 200 | 100 |
①求這2000為參與人員報價的平均值和樣本方差(同一區(qū)間的報價可用該價格區(qū)間的中點值代替);
②假設所有參與該商品促銷活動人員的報價可視為服從正態(tài)分布,且與可分別由①中所求的樣本平均值和樣本方差估值.若預計2019年雙十一該商品最終銷售量為317400,請你合理預測(需說明理由)該商品的最低成交價.
參考公式即數(shù)據(i)回歸方程:,其中,
(ii)
(iii)若隨機變量服從正態(tài)分布,則,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數(shù)據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com