【題目】如圖,在四棱錐中,為等邊三角形,,,且,,中點.

(1)求證:平面平面;

(2)若線段上存在點,使得二面角的大小為,求的值;

(3)在(2)的條件下,求點到平面的距離.

【答案】(1)證明見解析;(2);(3).

【解析】分析:(1)證明PE⊥AD,PE⊥BE,即可證明PE⊥平面ABCD,從而證明平面PAD⊥平面ABCD;
(2)建立空間直角坐標(biāo)系,利用坐標(biāo)表示向量,求出平面EBQ和平面EBC的法向量,由此表示二面角Q-BE-C,求出的值;
(3)利用在平面EBQ法向量上的投影,求出點C到平面QEB的距離.

(1)證明:連接,,

是等邊三角形,中點,∴,

又∵,∴,,∴,且

∴四邊形為矩形,∴,,

,∴,

又∵,∴平面,

又∵平面,∴平面平面.

(2)如圖建系,,,,

設(shè),

,

設(shè)平面的法向量為

,

,

平面的法向量不妨設(shè)為,

,

,∴(舍),

.

(3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機對學(xué)習(xí)成績的影響,詢問了30名同學(xué),得到如下的列聯(lián)表:

使用智能手機

不使用智能手機

總計

學(xué)習(xí)成績優(yōu)秀

4

8

12

學(xué)習(xí)成績不優(yōu)秀

16

2

18

總計

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學(xué)習(xí)成績有影響?

(Ⅱ)從使用智能手機的20名同學(xué)中,按分層抽樣的方法選出5名同學(xué),求所抽取的5名同學(xué)中學(xué)習(xí)成績優(yōu)秀學(xué)習(xí)成績不優(yōu)秀的人數(shù);

(Ⅲ)從問題()中被抽取的5名同學(xué),再隨機抽取3名同學(xué),試求抽取3名同學(xué)中恰有2名同學(xué)為學(xué)習(xí)成績不優(yōu)秀的概率.

參考公式:,其中

參考數(shù)據(jù):

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星至地球的連線)在相同的時間內(nèi)掃過的面積相等.設(shè)橢圓的長軸長、焦距分別為李明根據(jù)所學(xué)的橢圓知識,得到下列結(jié)論:

①衛(wèi)星向徑的最小值為,最大值為;

②衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁;

③衛(wèi)星運行速度在近地點時最小,在遠地點時最大

其中正確結(jié)論的個數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;

2)當(dāng)時,不等式上恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.

(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,,不在軸上的動點滿足于點的中點。

(1)求點的軌跡的方程;

(2)設(shè)曲線軸正半軸的交點為,斜率為的直線交兩點,記直線的斜率分別為,試問是否為定值?若是,求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某門市部的一種小商品在過去的20天內(nèi)的日銷售量與價格均為時間的函數(shù),且日銷售量近似滿足函數(shù),而且銷售價格近似滿足于

1試寫出該種商品的日銷售額與時間的函數(shù)表達式;

2求該種商品的日銷售額的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水產(chǎn)試驗廠實行某種魚的人工孵化,10 000個魚卵能孵化8 513尾魚苗,根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)這種魚卵的孵化率(孵化概率)是多少?

(2)30 000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5 000尾魚苗,大概需要多少個魚卵?(精確到百位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓內(nèi)一個定點,是圓上任意一點.線段的垂直平分線和半徑相交于點.

(Ⅰ)當(dāng)點在圓上運動時,點的軌跡是什么曲線?并求出其軌跡方程;

(Ⅱ)過點作直線與曲線交于兩點,點關(guān)于原點的對稱點為,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案