3.將函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間是( 。
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈z)$B.$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$
C.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$D.$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈z)$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求得函數(shù)g(x)的單調(diào)遞增區(qū)間.

解答 解:將函數(shù)f(x)=sin2x的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)=sin2(x-$\frac{π}{6}$)=sin(2x-$\frac{π}{3}$)的圖象,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
故選:C.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點(diǎn),E為CD中點(diǎn),過M,N作平面MNPQ分別與BC,AD交于點(diǎn)P,Q,若$\overrightarrow{DQ}$=t$\overrightarrow{DA}$.
(1)當(dāng)t=$\frac{1}{2}$時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實(shí)數(shù)t,使得二面角M-PQ-A的平面角的余弦值為$\frac{\sqrt{5}}{5}$?若存在,求出實(shí)數(shù)t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α=sin150°,b=tan60°,c=cos(-120°),則a、b、c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0),作傾斜角為$\frac{π}{6}$的直線FE交該雙曲線右支于點(diǎn)P,若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),且$\overrightarrow{OE}$•$\overrightarrow{EF}$=0,則雙曲線的離心率為( 。
A.$\frac{\sqrt{10}}{5}$B.$\sqrt{3}$+1C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xln(x+1)+($\frac{1}{2}$-a)x+2-a,a∈R.
(I)當(dāng)x>0時,求函數(shù)g(x)=f(x)+ln(x+1)+$\frac{1}{2}$x的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a∈Z時,若存在x≥0,使不等式f(x)<0成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個化肥廠生產(chǎn)甲、乙兩種肥料,生產(chǎn)一車皮甲種肥料需要磷酸鹽4噸、硝酸鹽18 噸;生產(chǎn)一車皮乙種肥料需要磷酸鹽1噸、硝酸鹽15噸.已知生產(chǎn)一車皮甲種肥料產(chǎn)生的利 潤是10萬元,生產(chǎn)一車皮乙種肥料產(chǎn)生的利潤是5萬元.現(xiàn)庫存磷酸鹽10噸、硝酸鹽66 噸.如果該廠合理安排生產(chǎn)計劃,則可以獲得的最大利潤是
( 。
A.50萬元B.30萬元C.25萬元D.22萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過拋物線y2=2px(p>0)的焦點(diǎn)作直線交拋物線于P(x1,y1),Q(x2,y2)兩點(diǎn),若x1+x2=6,|PQ|=10,則拋物線的方程為(  )
A.y2=2xB.y2=4xC.y2=6xD.y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若拋物線y2=8x的準(zhǔn)線和圓x2+y2+6x+m=0相切,則實(shí)數(shù)m的值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在數(shù)列{an}中,若$\frac{{{a_{n+1}}}}{a_n}$為定值,且a4=2,則a2a3a5a6等于(  )
A.32B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊答案