【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)當(dāng)時(shí),是什么曲線?

2)當(dāng)時(shí),求的公共點(diǎn)的直角坐標(biāo).

【答案】1)曲線表示以坐標(biāo)原點(diǎn)為圓心,半徑為1的圓;(2.

【解析】

1)利用消去參數(shù),求出曲線的普通方程,即可得出結(jié)論;

2)當(dāng)時(shí),,曲線的參數(shù)方程化為為參數(shù)),兩式相加消去參數(shù),得普通方程,由,將曲線化為直角坐標(biāo)方程,聯(lián)立方程,即可求解.

1)當(dāng)時(shí),曲線的參數(shù)方程為為參數(shù)),

兩式平方相加得

所以曲線表示以坐標(biāo)原點(diǎn)為圓心,半徑為1的圓;

2)當(dāng)時(shí),曲線的參數(shù)方程為為參數(shù)),

所以,曲線的參數(shù)方程化為為參數(shù)),

兩式相加得曲線方程為

,平方得,

曲線的極坐標(biāo)方程為,

曲線直角坐標(biāo)方程為,

聯(lián)立方程,

整理得,解得(舍去),

,公共點(diǎn)的直角坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.

方案:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.

方案:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.

假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè),試比較方案中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.

)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.

)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(ii)若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.

(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡(jiǎn)單題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為2,平面過正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長(zhǎng)安,至齊. 齊去長(zhǎng)安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)當(dāng)時(shí),是什么曲線?

2)當(dāng)時(shí),求的公共點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有下列四個(gè)命題:

p1:兩兩相交且不過同一點(diǎn)的三條直線必在同一平面內(nèi).

p2:過空間中任意三點(diǎn)有且僅有一個(gè)平面.

p3:若空間兩條直線不相交,則這兩條直線平行.

p4:若直線l平面α,直線m⊥平面α,則ml.

則下述命題中所有真命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在上的函數(shù),滿足,且對(duì)任意的,恒有,已知當(dāng)時(shí),,則有( 。

A.函數(shù)的最大值是1,最小值是

B.函數(shù)是周期函數(shù),且周期為2

C.函數(shù)上遞減,在上遞增

D.當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn),線段的中垂線交于點(diǎn).記點(diǎn)的軌跡為曲線.

1)求曲線的方程,并說明是什么曲線;

2)若直線與曲線交于兩點(diǎn),則在圓上是否存在兩點(diǎn)、,使得,?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案