【題目】如圖中,X、Y為直線BC上兩點(diǎn)(X、B、C、Y順次排列),使得.設(shè)的外心分別為,直線AB、AC分別交于點(diǎn)U、V.證明:為等腰三角形.

【答案】見解析

【解析】

證法1 如圖所示,作的平分線,與BC交于點(diǎn)P.設(shè)的外接圓分別為.

由內(nèi)角平分線的性質(zhì)知.

由條件得.

.

則點(diǎn)P對的冪相等.從而,點(diǎn)P在圓的根軸上.

于是,.這表明,點(diǎn)U、V關(guān)于直線AP對稱.

因此,為等腰三角形.

證法2 如圖所示,設(shè)的外心為O,聯(lián)結(jié).過點(diǎn)分別作直線BC的垂線,垂足分別為.作于點(diǎn)K.

下面證明:.

中,

.

由外心的性質(zhì),知.

,故.

分別為BC、CX的中點(diǎn),則

,

其中,R為的外接圓半徑.

類似地,.

由已知條件得

.

.

類似地,.

又因?yàn)?/span>,所以,

,

.

因此,為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)經(jīng)過原點(diǎn)分別作曲線、的切線,若兩切線的斜率互為倒數(shù),證明;

(2)設(shè),當(dāng)時,恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把編號為12,34的四個大小、形狀相同的小球,隨機(jī)放入編號為12,3,4的四個盒子里.每個盒子里放入一個小球.

1)求恰有兩個球的編號與盒子的編號相同的概率;

2)設(shè)小球的編號與盒子編號相同的情況有種,求隨機(jī)變量的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過(2,5),(﹣2,1)兩點(diǎn),并且圓心在直線yx.

1)求圓的標(biāo)準(zhǔn)方程;

2)求圓上的點(diǎn)到直線3x4y+230的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有大小相同的小球個,在小球上分別標(biāo)有12,3…,的號碼,已知從盒子中隨機(jī)取出兩個球,兩球號碼的最大值為的概率為

(Ⅰ)盒子中裝有幾個小球?

(Ⅱ)現(xiàn)從盒子中隨機(jī)地取出4個球,記所取4個球的號碼中,連續(xù)自然數(shù)的個數(shù)的最大值為隨機(jī)變量(如取標(biāo)號分別為2,46,8的小球時;取標(biāo)號分別為1,2,4,6的小球時;取標(biāo)號分別為12,3,5的小球時),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的有(

A.向量是共線向量,則點(diǎn)、、必在同一條直線上

B.,則角為第二或第四象限角

C.函數(shù)是周期函數(shù),最小正周期是

D.中,若,則為鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.

(1)當(dāng)時,求的極大值點(diǎn)和極小值點(diǎn);

(2)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系:當(dāng)時,的二次函數(shù);當(dāng)時,.測得部分?jǐn)?shù)據(jù)如表所示.

0

2

6

10

4

8

8

1)求關(guān)于的函數(shù)關(guān)系式;

2)求該新合金材料的含量為何值時產(chǎn)品的性能達(dá)到最佳.

查看答案和解析>>

同步練習(xí)冊答案