4.已知函數(shù)$f(x)=\frac{ax}{{{x^2}+1}}(x∈R)$,如圖是函數(shù)f(x)在[0,+∞)上的圖象.
(1)求a的值,并判斷函數(shù)的奇偶性補(bǔ)充作出函數(shù)f(x)在(-∞,0)上的圖象,說明作圖的理由;
(2)根據(jù)圖象指出(不必證明)函數(shù)的單調(diào)區(qū)間與值域;

分析 (1)由f(1)=$\frac{a}{2}$=2,求得 a的值,可得f(x)的解析式.
(2)結(jié)合f(x)的圖象可得函數(shù)的單調(diào)區(qū)間以及值域.

解答 解:(1)由函數(shù)$f(x)=\frac{ax}{{{x^2}+1}}(x∈R)$在[0,+∞)上的圖象,可得f(1)=$\frac{a}{2}$=2,∴a=4,f(x)=$\frac{4x}{{x}^{2}+1}$.
由函數(shù)的解析式可得f(x)為奇函數(shù),它的圖象關(guān)于原點(diǎn)對稱,
由此可得它在R上的圖象.
(2)結(jié)合f(x)的圖象可得函數(shù)的增區(qū)間為(-1,1),減區(qū)間為(-∞,-1)、(1,+∞).
函數(shù)的值域?yàn)閇-2,2].

點(diǎn)評 本題主要考查奇函數(shù)的解析式,函數(shù)的奇偶性和單調(diào)性的應(yīng)用,函數(shù)的值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t+1}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)若在極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,$\frac{π}{3}$),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動點(diǎn),求點(diǎn)Q到直線l的距離的最大值與最小值的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列各式正確的是( 。
A.$\sqrt{(-5)^{2}}$=-5B.$\root{4}{{a}^{4}}$=aC.$\sqrt{{7}^{2}}$=7D.$\root{3}{(-π)^{3}}$=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)長方體的棱長分別為1、2、2,它的頂點(diǎn)都在同一個(gè)球面上,這個(gè)球的體積為( 。
A.$\frac{9}{4}π$B.$\frac{9}{2}π$C.18πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某人在靜水中游泳的速度為$4\sqrt{3}$千米/時(shí),他現(xiàn)在水流速度為4千米/時(shí)的河中游泳.
(Ⅰ)如果他垂直游向河對岸,那么他實(shí)際沿什么方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?
(Ⅱ)他必須朝哪個(gè)方向游,才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 4x-y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,則4x•2y的最大值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)$f(x)={({\frac{1}{2}})^{1+{x^2}}}+\frac{1}{1+|x|}$,則使得f(2x-1)+f(1-2x)<2f(x)成立的x的取值范圍是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.$({-\frac{1}{3},\frac{1}{3}})$D.$({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x||x-1|<2},B={x|x2-2mx+m2-1<0}.
(1)當(dāng)m=3時(shí),求A∩B;   
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在區(qū)間[0,4]上任取一個(gè)實(shí)數(shù)x,則x>1的概率是(  )
A.0.25B.0.5C.0.6D.0.75

查看答案和解析>>

同步練習(xí)冊答案