如圖,為圓的直徑,點(diǎn)、在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.
(Ⅰ)求證:平面;
(Ⅱ)設(shè)的中點(diǎn)為,求證:平面;
(Ⅲ)設(shè)平面將幾何體分割成的兩個錐體的體積分別為、,求的值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,已知四棱錐P-ABCD,側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,∠DAB=60°.
(1)證明:∠PBC=90°;
(2)若PB=3,求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)四棱錐中,底面為矩形,側(cè)面底面,,,.
(Ⅰ)證明:;
(Ⅱ)設(shè)與平面所成的角為,
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長為2 的正方形,高為.M為線段PC的中點(diǎn).
(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) N為AP的中點(diǎn),求CN與平面MBD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形中,,,為線段的中線,將△沿直線翻折成△,使平面⊥平面,為線段的中點(diǎn).
(1)求證:∥平面;
(2)設(shè)為線段的中點(diǎn),求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,兩條異面直線AB,CD與三個平行平面α,β,γ分別相交于A,E,B及
C,F,D,又AD、BC與平面β的交點(diǎn)為H,G.
求證:四邊形EHFG為平行四邊形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com