三條直線兩兩垂直,現(xiàn)有一條直線與其中兩條都成60°,則此直線與另外一條直線所成角為
 
考點:異面直線及其所成的角
專題:空間角
分析:如圖所示,OA,OB,OC三條直線兩兩垂直,OP與兩條直線OB,OC都成60°.過點P作PD⊥平面OBC,垂足為點D.可得點D在∠BOC的平分線OM上,連接BD,CD.不妨取OA=OB=OC=2,分別在Rt△OPD中,在△OBD與△OBP中,利用勾股定理和余弦定理,可得
OD
OP
=
2
2
.于是∠POD=45°.即可得出∠AOP.
解答: 解:如圖所示,
OA,OB,OC三條直線兩兩垂直,OP與兩條直線OB,OC都成60°.
過點P作PD⊥平面OBC,垂足為點D.則點D在∠BOC的平分線OM上,
連接BD,CD.
不妨取OA=OB=OC=2,
在Rt△OPD中,由勾股定理可得PD2=OP2-OD2
在△OBD與△OBP中,由余弦定理可得:
BD2=OB2+OD2-2OB•OD•cos45°=22+OD2-4OD×
2
2
=4+OD2-2
2
OD
,
PB2=OB2+OP2-2OB•OP•cos60°=4+OP2-2OP.
在Rt△BDP中,由勾股定理可得:PB2=BD2+PD2
∴4+OP2-2OP=4+OD2-2
2
OD
+OP2-OD2,
化為
OD
OP
=
2
2

∴∠POD=45°.
∴∠AOP=45°.
即直線OP與另外一條直線OA所成角為45°.
點評:本題考查了異面直線所成的角、線面垂直的性質(zhì)、余弦定理和勾股定理,考查了輔助線的作法,考查了推理能力和計算能力,考查了空間想象能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

利用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
3
+…+
1
2n-1
<f(n)(n≥2,n∈N*)的過程中,由n=k變到n=k+1時,左邊增加的項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+i(i是虛數(shù)單位),則
4
z
-z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=2(cosα,sinα),
b
=2(cosβ,sinβ),
a
-
b
=(
3
,1)則cos2(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=f(x)過點(2,
2
),則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓和雙曲線有公共的焦點,且它們的離心率互為倒數(shù),若橢圓方程是
x2
16
+
y2
8
=1,則雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=
2
2
,則下列結(jié)論中正確的序號是
 

(1)AC⊥BE;        
(2)EF∥平面ABCD;
(3)面AEF⊥面BEF; 
(4)三棱錐A-BEF的體積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{
1
n2+n
}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),…按此規(guī)律下去,即(
1
2
),(
1
6
1
12
),(
1
20
1
30
,
1
42
),(
1
56
,
1
72
,
1
90
,
1
110
),則第6個括號內(nèi)各數(shù)字之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
AB
=
a
,
AD
=
b
BC
=
c
,則
DC
等于(  )
A、
a
-
b
+
c
B、
b
-(
a
+
c
C、
a
+
b
+
c
D、
b
-(
a
-
c

查看答案和解析>>

同步練習(xí)冊答案