10.函數(shù)$f(x)=cos(x-\frac{π}{4})$的圖象的一條對稱軸方程是( 。
A.$x=\frac{π}{4}$B.$x=\frac{π}{2}$C.$x=\frac{3π}{4}$D.$x=\frac{3π}{8}$

分析 利用余弦函數(shù)的圖象的對稱性,求得函數(shù)$f(x)=cos(x-\frac{π}{4})$的圖象的一條對稱軸方程.

解答 解:對于函數(shù)$f(x)=cos(x-\frac{π}{4})$,令x-$\frac{π}{4}$=kπ,求得x=kπ+$\frac{π}{4}$,k∈Z,
可得它的圖象的一條對稱軸方程是x=$\frac{π}{4}$,
故選:A.

點評 本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸入m=4,n=6,則輸出a=( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.現(xiàn)有一大批種子,其中優(yōu)良種占30%,從中任取8粒,記X為8粒種子中的優(yōu)質(zhì)良種粒數(shù),則X的期望是:2.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD與BDEF均為菱形,設(shè)AC與BD相交于點O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FO⊥平面ABCD;  
(2)求二面角A-FC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,a=3,b=5,$cosA=\frac{{2\sqrt{2}}}{3}$,則sinB=( 。
A.$\frac{1}{5}$B.$\frac{5}{9}$C.$\frac{{\sqrt{5}}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=x2+4x,且f(2cosθ-1)=m,則m的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點M(ρ,θ),則M點關(guān)于極點對稱的點N的極坐標(biāo)是( 。
A.(ρ,π+θ)B.(ρ,-θ)C.(ρ,π-θ)D.(ρ,2π-θ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}-x+2,x≥a\\{x^2}+3x+2,x<a.\end{array}\right.$恰有兩個不同的零點,則a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(1)“已知函數(shù)f(x)=x2-mx+1對一切實數(shù)x,f(x)>0恒成立”;
(2)“關(guān)于x的不等式x2<9-m2有實數(shù)解”.
若以上結(jié)論中(1)錯誤并且(2)正確,則實數(shù)m的取值范圍為(-3,-2]∪[2,3).

查看答案和解析>>

同步練習(xí)冊答案