(本小題滿分12分)袋中有大小相同的紅、黃兩種顏色的球各1個(gè),從中任取1只,有放回地抽取3次.求:

(Ⅰ)3只全是紅球的概率;

(Ⅱ)3只顏色全相同的概率;

(Ⅲ)3只顏色不全相同的概率.

 

【答案】

(Ⅰ);(Ⅱ);(Ⅲ)

【解析】

試題分析:解法一:由于是有放回地取球,因此袋中每只球每次被取到的概率均為. 

(Ⅰ)3只全是紅球的概率為P1··.                    

(Ⅱ)3只顏色全相同的概率為P2=2·P1=2·

(Ⅲ)3只顏色不全相同的概率為P3=1-P2=1-

解法二:利用樹(shù)狀圖我們可以列出有放回地抽取3次球的所有可能結(jié)果:

,

由此可以看出,抽取的所有可能結(jié)果為8種.所以

(Ⅰ)3只全是紅球的概率為P1

(Ⅱ)3只顏色全相同的概率為P2

(Ⅲ)3只顏色不全相同的概率為P3=1-P2=1-

考點(diǎn):等可能事件的概率;相互獨(dú)立事件的概率乘法公式;互斥事件與對(duì)了事件。

點(diǎn)評(píng):本題主要考查等可能事件的概率,相互獨(dú)立事件同時(shí)發(fā)生的概率,本題解題的關(guān)鍵是看清條件中所給的是有放回的抽樣,注意區(qū)別有放回和無(wú)放回兩種不同的情況,本題是一個(gè)中檔題目.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案